OKLAHOMA DEPARTMENT OF ENVIRONMENTAL QUALITY AIR QUALITY DIVISION

MEMORANDUM July 6, 2021

TO: Phillip Fielder, P.E., Chief Engineer

THROUGH: Rick Groshong, Compliance and Enforcement Group Manager

THROUGH: Eric L. Milligan, P.E., Manager, Engineering Section

THROUGH: Jian Yue, P.E., New Source Permits Section

FROM: David Schutz, P.E., New Source Permits Section

SUBJECT: Evaluation of Permit Application No. 2017-0042-C (M-10)

Wynnewood Refining Company, LLC Wynnewood Refinery (FAC ID 1782)

Storage Tank Changes

Wynnewood, Garvin County, Oklahoma

906 S. Powell

Located Immediately South of Wynnewood on US-77

Latitude 34.63001°N, Longitude 97.16942°W

SECTION I. INTRODUCTION

The Wynnewood Refining Company, LLC (WRC) has requested a construction permit for a significant modification to their facility. WRC operates a petroleum refinery (SIC 2911 & NAICS 324110) in south-central Oklahoma. The facility is currently operating under Permit No. 2017-0042-TVR2 (M-9) which was issued on February 4, 2021. The facility is a major source for Prevention of Significant Deterioration (PSD) and a major source of Hazardous Air Pollutants (HAPs).

The proposed modifications will do the following:

Authorize the modification of Tank 1324 in EUG 22 to install an internal floating roof (IFR) and update the products stored in this tank to remove asphalt and only store wastewater with a maximum true vapor pressure of 1.5 pounds per square inch absolute (psia). Tank 1324 will be used as a surge tank for process wastewater at the refinery. This change is not associated with any physical or operational changes of any process units at the refinery and will not cause an increase in throughputs for any process units at the refinery.

Tank 1324 has historically operated as a fixed cone roof tank subject to the requirements in 40 CFR Part 60, Subpart K; 40 CFR Part 63 Subpart CC (Group 1 Storage Vessels); and 40 CFR 60, Subpart QQQ. The installation of the internal floating roof in conjunction with a proposed increase in the vapor pressure of wastewater stored in this tank is considered a modification under New Source Performance Standards (NSPS) rules since potential emissions from T-1324 will increase from 0.87 TPY VOC to 1.28 TPY As such, this tank

will now be subject to 40 CFR Part 60, Subpart Kb and 40 CFR Part 63 Subpart CC. Since the tank is subject to and complies with 40 CFR Part 60, Subpart Kb, the tank is not subject to 40 CFR Part 60 Subpart QQQ per 40 CFR §60.692-3(d).

- Incorporate external floating roof (EFR) Tank 2003 (Point ID P-T2003) into the permit to store wastewater. The tank is applicable to 40 CFR Part 60, Subpart Kb and 40 CFR Part 63, Subpart CC. WRC requests to add a new EUG to the permit for this tank, EUG-24. Tank 2003 previously stored stormwater and was not in the facility permit as an air emissions source, but following the project, it will store hydrocarbons.
- WRC requests to revise rule applicability for Tank 2051 in EUG 21. The tank is currently listed in the permit as being applicable to 40 CFR Part 60 Subpart Kb and 40 CFR Part 63 Subpart CC (Group 1 Storage Vessels). However, the maximum true vapor pressure for this tank is limited to less than 0.5 psia. Therefore, WRC requests to remove 40 CFR Part 60 Subpart Kb applicability and update 40 CFR Part 63 Subpart CC to reference Group 2 Storage Vessel applicability since the maximum true vapor pressure will not exceed 0.5 psia. The title of EUG-21 will be changed accordingly.
- Authorize the installation of additional fugitive components associated with the routing of surge wastewater to Tank 1324. New components will be added to volatile organic compounds (VOC) Leakage at Tank Farm (EUG 30; Point ID EU-3710): 10 valves in light liquid service and 20 flanges in light liquid service.

The projects involve physical changes, a modification under NSPS, and a reduction in monitoring, reporting, and recordkeeping. Therefore, a Tier II construction permit is required.

SECTION II. PROJECT ANALYSIS

Emissions changes will involve change-of-service to two tanks and addition of 10 valves and 20 flanges in the tank farm. The other item, changing the applicable standards for Tank 2051, does not change emissions. The changes to the two other tanks are not expected to enhance the refining operations, therefore, there will be no "associated" emissions changes elsewhere in the refinery.

The following table lists the post-project PTE for the new fugitive components and two affected tanks. Tank VOC emissions include roof landings.

Point	Description	VOC, TPY
P-T1324	TK-1324 - 66,590 BBL IFR Tank – Oily Wastewater	4.47
P-T2003	TK-2003 - 90,000 BBL EFR Tank – Oily Wastewater	3.93
EU-3710	Added VOC Leakage at Tank Farm	0.18
TOTAL		8.58

Total VOC emissions from the modified units are below 40 TPY, therefore, a net change analysis is not needed.

NSPS Subparts GGG and GGGa define "process unit" as "components assembled to produce intermediate or final products from petroleum, unfinished petroleum derivatives, or other intermediates: a process unit can operate independently if supplied with sufficient feed or raw materials and sufficient storage facilities for the product." The proposed added valves in the wastewater handling system are not "within a process unit," therefore, the addition of 10 valves and 20 flanges is not a "modification" for NSPS Subpart GGGa.

As previously stated, installation of a floating roof on Tank 1324 and increasing the vapor pressure of the liquids stored constitutes a "modification" under NSPS Subpart Kb. In addition, changing Tank 2003 to wastewater service from stormwater establishes it as being subject to NSPS Subpart Kb.

SECTION III. FACILITY DESCRIPTION

The refinery converts crude oil into a variety of liquid fuels, solvents, asphalt, and liquefied petroleum gases (LPG). Operations at the facility are divided into four categories: storage tanks, process units, utilities and auxiliaries, and blending and loading. The facility includes process units for distillation and chemical reaction operations, significant atmospheric storage tanks, combustion units, additional combustion units operated for controlling air pollution emissions, fuel gas amine treating and regeneration units, sulfur recovery and tail gas treatment units, product and raw material loading/unloading units, gasoline blending, diesel blending, asphalt blending, and auxiliary units for waste handling. Crude oil arrives primarily by pipeline but also by truck.

A. Process Units

Processing operations identified by the Wynnewood Refinery process flow diagram include the No. 1 Crude Unit, No. 3 Vacuum Unit, No. 2 Crude Unit, No. 2 Vacuum Unit, Straight Run Stabilizer, Merox Unit, No. 1 Splitter, No. 2 Splitter, Naphtha Unifiner, Hydrogen Plant, LSR Hydrotreating Unit, ROSE (Residual Oil Supercritical Extraction) Unit, CCR (Continuous Catalyst Regeneration) Platformer, Hydrocracker, FCCU (Fluid Catalytic Cracking Unit), Platformer Depropanizer, Deisobutanizer, Olefins Treater, Propylene Splitter, Alkylation Unit, Fuel Gas Treaters, Fuel Gas Drum, Sulfur Recovery Unit, Diesel Hydrotreater Unit, Asphalt Oxidizer, Asphalt Blending, Distillate Blending, GHDS Unit, Benfree Unit, and Gasoline Blending. The refinery also operates gasoline, distillate, asphalt, LPG (liquefied petroleum gas), solvent, and slurry loading facilities and steam and utility systems.

Crude oil processing begins at the No. 1 and No. 2 Crude Units. First, salt, water, and inorganic particles are separated from the crude oil, which is then distilled. In the distillation process, the crude is divided into several fractions depending on boiling point of the hydrocarbons present. Streams from the Crude Units include light hydrocarbons (methane, ethane, propane, butane) that become refinery fuel gas and LPG, straight run gasoline, naphtha, distillate, and residual streams such as gas oil and reduced crude. The residual oil, referred to as "reduced crude," is first processed in the Crude Vacuum Units (CVU) where additional gas oil is distilled out at reduced pressures. The gas oil from the crude units and vacuum units becomes the primary feed to the FCCU. As an intermediate step, some of the vacuum bottoms are processed for removal of asphaltenes/resins in the ROSE Unit before proceeding to either the Asphalt Oxidizer or FCCU.

The FCCU heats residual hydrocarbons to 900-1,000°F in the presence of a silica-based catalyst to convert the "gas oil" into lighter components. The large organic molecules break into smaller components. Most of these lighter components (about 60%) are recovered for gasoline blending. Other lighter components are recovered as reactants for other refinery processes, fuel gas, olefins, or LPG. Heavy oil off the bottom of the unit is sold as slurry oil. Some of the organic materials become "coke" on the surface of the catalyst that is regenerated by burning off the coke before recirculating the catalyst back to the FCCU.

Some of the light naphtha is processed by the "CCR Platformer Unit." "CCR Platformer" is a shortened form of "continuous catalyst regeneration platinum-catalyzed reformer" which converts naphtha into aromatic components of gasoline such as benzene, ethyl benzene, toluene, and xylene.

Other gasoline blending components are prepared by combining smaller organic components in the LPG range into heavier components in the Alkylation Unit. Olefins separated from the processes (mostly as products of the FCCU) are reacted in the presence of hydrogen fluoride (HF) to form larger heptane and octane molecules.

Sulfur must be removed from sour refinery fuel gas, blending components, and reactants which will become blending components. WRC treats refinery fuel gas for H₂S removal by amine treatment. The sour gas from regenerating the amine is then processed in a sulfur recovery unit (SRU) that converts H₂S to molten sulfur. The SRU is also used to treat off-gas from sour water stripping for H₂S and ammonia removal. Some distillates are processed by a "Merox" unit, in which high-strength sodium hydroxide reacts with mercaptans and converts them to disulfide oils which remain in the product. Light naphtha is treated in a "Unifiner" Unit. "Unifining" is equivalent to hydrodesulfurization, where hydrogen gas is used to react with hydrocarbons, breaking off sulfur as hydrogen sulfide and lesser amounts of other Total Reduced Sulfur (TRS) compounds such as methyl sulfide. Hydrotreating also converts larger olefins into aliphatic hydrocarbons and naphthas which are not prone to form gummy resins during storage. An amine unit is also used to reduce the H₂S content in alkylate feed. The H₂S-containing gas from treating alkylate feed is processed through the SRU.

Hydrotreating requires large amounts of hydrogen gas. The Platformer Unit and the Hydrogen Plant are the sources of hydrogen. Unreacted hydrogen gas is vented from other units into the Refinery Fuel Gas (RFG) system or flared.

This refinery also operates a hydrocracker. Similar to the FCCU, this unit cracks larger molecules into ones in the size range for gasoline blending. With a different catalyst, the hydrocracker can be used to process soybean oil, plant oils, or animal fats into distillate; its normal service is processing petroleum-based feeds.

B. Storage Tanks

There are several significant hydrocarbon storage tanks at the refinery. Some are pressure vessels operated with only fugitive emissions. Others are operated at atmospheric pressure. In addition to the significant hydrocarbon tanks, the refinery has numerous insignificant tanks, acid tanks, caustic tanks, chemical additive tanks, wastewater tanks, and fire water tanks.

There are several rules and regulations affecting storage tanks, depending on liquid stored, capacity, vapor pressure, hazardous air pollutant (HAP) concentrations, and date of construction/reconstruction. The tanks' designs are internal floating roof, external floating roof, vertical cone roof, and horizontal.

These tanks include raw material storage, product storage, and storage for intermediates. Having intermediate storage allows various process units to keep operating when upstream or downstream units are down or operating at reduced capacity. The presence of intermediate storage allows for delineation between process units as necessitated by NSPS Subpart GGG / GGGa and 40 CFR Part 63, Subpart CC.

C. Utility Operations

Utility operations provide fuel and steam to heat various operations and allow for treatment and permitted discharge of wastewater.

Refinery fuel gas is a blend of natural gas, non-condensable gases, gases from relief valve discharge, unit purges, and a variety of process unit off-gases. A wide spectrum of gases generated in the refinery which are combustible become refinery fuel gas. These gases are combined in a single fuel mix drum for supply to all units within the refinery. Ideally, the refinery would generate the same amount of fuel gas as is needed, but in reality, fluctuations result in purchasing natural gas on some days and in flaring excess fuel gas on other days.

The mix drum blends three streams, "sweet" gases from the platformer, "sour" gases from other units, and pipeline-grade natural gas. Sour fuel gas is treated with amine to remove H_2S . Because all units fired on refinery fuel gas (RFG) are subject to NSPS, WRC must treat the fuel gas to at least 162 ppm sulfur. The concentration of hydrogen sulfide in the RFG is monitored continuously using an online gas chromatograph.

There are currently four boilers at the facility. These boilers were designated "Wabash Boiler," "Indeck Boiler," "Nebraska Boiler," and "FCCU Boiler."

Two flares are currently present at the facility. The Hydrocracker Flare combusts releases from relief systems in the Hydrocracker Unit and Merox treater. The West Flare combusts releases from the Naphtha Unifiner Unit, CCR Platformer, FCCU, Deisobutanizer Unit, Plat Depropanizer Unit, Alkylation Unit, LPG loading rack, Crude Units, Crude Vacuum Units, LSR Hydotreating Unit, No. 1 Naphtha Splitter, No. 2 Naphtha Splitter, Refinery Fuel Gas (RFG) Unit, and miscellaneous units located at the south end of the facility and pressure tanks for propane, butane, and olefins.

Wastewater is collected throughout the refinery. The most significant source is the crude oil desalters, where oily water is separated from crude oil. Various units generate additional wastewater with varying degrees of oil content. The refinery segregates storm water that falls outside the process areas into a separate wastewater system that discharges through a permitted storm water outfall. Storm water that falls in process areas is not collected in separate sewers, but some units do preliminary oil-water separation prior to discharging into integrated sewers. There is an initial oil-water separator adjacent to the Crude Desalter and another one adjacent to the Crude Unit, Hydrocracker, and Platformer. Oily water proceeds to an API separator, then to an Activated Sludge unit. Sludge is periodically collected and dewatered for shipment off-site, while water continues to clarifiers and lagoons, and eventually to the Washita River.

D. Blending and Product Loading Operations

Equipment is present for shipping or receiving several hydrocarbon products: LPG, gas oil, asphalt, propylene, isobutane, n-butane, gasoline, jet fuel (JP-5 and JP-8), slurry, solvent, burner fuel, and diesel. LPG, gas oil, propylene, and butanes are both bought and sold by the refinery, depending on market conditions, short-terms excesses, etc. Molten sulfur is also loaded into rail cars or trucks.

Gasoline blending is done on a batch basis using large tanks. The several components are measured into the tanks. The tanks perform dual roles, both as process equipment and storage equipment. Gasoline products are sold by either pipeline or truck.

SECTION IV. EQUIPMENT

The contents identified in the following tables concerning tanks are typical. Tank contents will vary from time-to-time depending upon refinery requirements, but will be limited by the suitability of a particular tank for a particular hydrocarbon.

EUG 1 – Cone Roof Tanks, Subject to 40 CFR Part 63 Subpart CC (Group 2 Storage Vessels)

EU	Point	Normal Contents	Capacity	Installed Date
P-T108	P-T108	Jet kerosene	13,800 bbl.	1945
P-T111	P-T111	Jet kerosene	5,000 bbl.	1945
P-T162	P-T162	JP-8 additive	1,000 bbl.	1954
P-T252	P-T252	Slurry oil	26,800 bbl.	1945
P-T253	P-T253	High-sulfur diesel	25,000 bbl.	1957
P-T256	P-T256	Jet kerosene	5,000 bbl.	1957
P-T260	P-T260	Slurry oil	5,100 bbl.	1957
P-T262	P-T262	Gas oil	5,100 bbl.	1959
P-T-263	P-T263	Slop oil / Asphalt	5,100 bbl.	1959
P-T1441	P-T1441	Jet kerosene	34,800 bbl.	6/72
P-T269	P-T269	Biodiesel	5,100 bbl.	1961

EUG 2 – Cone Roof Tanks, Subject to 40 CFR Part 63, Subpart LLLLL (Group 2 Asphalt Storage Tanks)

EU	Point	Normal Contents	Capacity	Installed Date
P-T101	P-T101	Asphalt	64,000 bbl.	1945
P-T107	P-T107	Asphalt	78,000 bbl.	1945
P-T120	P-T120	Asphalt	2,800 bbl.	1945
P-T265	P-T265	Asphalt	5,100 bbl.	1959

EUG 3 – Cone Roof Tanks, Constructed 6/12/73 to 5/18/78 (NSPS Subpart K), Subject to 40 CFR Part 63 Subpart CC (Group 2 Storage Vessels)

EU	Point	Normal Contents	Capacity	Installed Date
P-T126	P-T126	FCCU charge	79,500 bbl.	10/15/74
P-T202	P-T202	FCCU charge	80,000 bbl.	6/15/74
P-T1323	P-T1323	Asphalt	4,512 bbl.	6/15/74

EUG 4 – Cone Roof Tanks, Subject to 40 CFR Part 63, Subpart LLLLL; 40 CFR Part 63, Subpart CC (Group 2 Storage Tanks); 40 CFR Part 60, Subpart QQQ

EU	Point	Normal Contents	Capacity	Installed Date
P-T136	P-T136	Asphalt, Diesel, Wastewater	80,000 bbl.	1957
P-T134	P-T134	Asphalt, Diesel, Wastewater	80,000 bbl.	1954

EUG 5 – Cone Roof Tanks, Constructed 5/18/78 to 7/22/84 (NSPS Subpart Ka), Subject to 40 CFR Part 63 Subpart CC (Group 2 Storage Vessels)

EU	Point	Normal Contents	Capacity	Installed Date
P-T264	P-T264	Gas oil / Asphalt	5,100 bbl.	6/15/78
P-T601	P-T601	Asphalt resin	5,000 bbl.	6/15/78
P-T1321	P-T1321	Asphalt	5,000 bbl.	2/15/79

EUG 7 – Cone Roof Tanks, Constructed after 7/23/84 (NSPS Subpart Kb), Subject to 40 CFR Part 63 Subpart CC (Group 2 Storage Vessels)

EU	Point	Normal Contents	Capacity	Installed Date
P-T1474	P-T1474	Diesel additive	1,000 bbl.	11/1/88
P-T1475	P-T1475	High-sulfur diesel	34,700 bbl.	2/15/93
P-T200	P-T200	Diesel	80,000 bbl.	2007

EUG 8 - Internal Floating Roof Tanks, Subject to NSPS Subpart K, Subject to 40 CFR Part 63 Subpart CC (Group 1 Storage Vessels), and 40 CFR Part 63, Subpart WW

EU	Point	Normal Contents	Capacity	Installed Date
P-T67	P-T67	Crude oil	68,884 bbl.	6/1/75
P-T68	P-T68	Crude oil	68,884 bbl.	6/1/75
P-T69	P-T69	Crude oil	68,884 bbl.	6/1/75

EUG 9 – Internal Floating Roof Tanks Constructed Prior to 6/12/73, Subject to 40 CFR Part 63 Subpart CC (Group 1 Storage Vessels) and Subpart WW

EU	Point	Normal Contents	Capacity	Installed Date
P-T146	P-T146	Premium unleaded gasoline	80,000 bbl.	1952
P-T1471	P-T1471	Premium unleaded gasoline	34,800 bbl.	6/73
P-T257	P-T257	Unifined naphtha	10,000 bbl.	1957

EUG 10 - Internal Floating Roof Tanks, Subject to NSPS Subpart K, Subject to 40 CFR Part 63 Subpart CC (Group 2 Storage Vessels)

EU	Point	Normal Contents	Capacity	Installed Date
P-T1473	P-T1473	Mineral spirits/light reformate/ethanol	9,600 bbl.	6/15/75

EUG 11 – External Floating Roof Tanks, Constructed Prior to 6/12/73, Subject to 40 CFR Part 63 Subpart CC (Group 1 Storage Vessels) and Subpart WW

EU	Point	Normal Contents	Capacity	Installed Date
P-T142	P-T142	Unleaded gasoline	55,000 bbl.	1954
P-T143	P-T143	Unleaded gasoline	55,000 bbl.	1957
P-T144	P-T144	Premium unleaded gasoline	55,000 bbl.	1954
P-T147	P-T147	FCCU gasoline	80,000 bbl.	1952
P-T150	P-T150	Platformate	24,800 bbl.	1952
P-T152	P-T152	Platformate	24,800 bbl.	1952
P-T154	P-T154	Heavy unicrackate	24,800 bbl.	1952
P-T164	P-T164	Light unicrackate/light reformate	10,000 bbl.	1951
P-T168	P-T168	Alkylate	35,700 bbl.	1959
P-T250	P-T250	Jet fuel	10,000 bbl.	1958
P-T251	P-T251	Mineral spirits	10,000 bbl.	1957
P-T254	P-T254	Unleaded gasoline	24,800 bbl.	1958
P-T255	P-T255	Benfree combo	24,800 bbl.	1954
P-T1470	P-T1470	Unleaded gasoline	79,600 bbl.	1972

Tanks 250 and 251 currently contain hydrocarbons that are not subject to MACT controls, but the vessels are capable of compliance with 40 CFR Part 63, Subpart CC, if the liquids should be changed.

EUG 12 – External Floating Roof Tanks Constructed After 7/23/84, Subject to 40 CFR Part 63 Subpart CC (Group 1 Storage Vessels) and Subpart WW

EU	Point	Normal Contents	Capacity	Installed Date
P-T155	P-T155	Naphtha	40,000-bbl.	2007
P-T70	P-T70	Crude oil	120,000-bbl.	2007
P-T148	P-T148	Unleaded gasoline	75,900-bbl.	1994
P-T140	P-T140	DHT / HC feed	80,000-bbl.	2007
P-T138	P-T138	DHT / HC feed	80,000-bbl.	2007
P-T203	P-T203	Gasoline	80,000-bbl.	2009
P-T71	P-T71	Crude oil	250,000-bbl	2015
P-T110	P-T110	Light Cycle Oil	15,088-bbl.	2013

\mathbf{EU}	Point	Normal Contents	Capacity	Installed Date
P-T204	P-T204	DHT / HC Feed / Diesel	160,000-bbl.	2015

EUG 13 – External Floating Roof Tank, Subject to NSPS Subpart Ka, Subject to 40 CFR Part 63 Subpart CC (Group 1 Storage Vessels), and 40 CFR Part 63, Subpart WW

EU	Point	Contents	Capacity	Installed Date
P-T303	P-T303	Crude oil	250,000 bbl.	5/81

EUG 14 – External Floating Roof Tank, Subject to NSPS Subpart K, Subject to 40 CFR Part 63 Subpart CC (Group 1 Storage Vessels), and 40 CFR Part 63, Subpart WW

EU	Point	Contents	Capacity	Installed Date
P-T1449	P-T1449	Crude oil	76,425 bbl.	6/74

EUG 15 - Asphalt Unit Tanks Subject 40 CFR Part 63 Subpart LLLLL (Group 2 Asphalt Storage Tanks)

Tank ID	Туре	Material Handled	Capacity (bbls)	Height (ft)	Diameter (ft)	Constr. Date
P-T1331	Cone roof	Asphalt	5,000	40	30	2002
P-T1332	Cone roof	Asphalt	5,000	40	30	2002
P-T1333	Cone roof	Asphalt	5,000	40	30	2002
P-T1337	Cone roof	Asphalt	1,500	32	18.5	2002
P-T1338	Cone roof	Asphalt	1,500	32	18.5	2002

EUG 16 – Internal Floating Roof Tanks, Subject to 40 CFR Part 60, Subpart Kb; Subject to 40 CFR Part 63 Subpart CC (Group 1 Storage Vessels)

EU	Point	Normal Contents	Capacity	Installed Date
P-T1472	P-T1472	Gasoline / Low-sulfur diesel	34,700 bbl.	6/73 (mod 2020)

EUG 17 – External Floating Roof Tank (Sour Water), Subject to 40 CFR Part 60 Subpart Kb, Subject to 40 CFR Part 63 Subpart CC (Group 1 Storage Vessels)

EU	Point	Normal Contents	Capacity	Installation/ Modification Date
P-T2052	P-T2052	Sour water stripper feed	21,531-bbl.	2017

The tank is used for surge control or emergency storage when the sour water stripper is down.

EUG 18 – Cone Roof Tanks, Subject to 40 CFR Part 63, Subpart CC (Group 2 Vessels)

20 10 10 11 11 11 11 11 11 11 11 11 11 11					
EU	Point	Normal Contents	Capacity	Installed Date	
P-T1501	P-T1501	Crude oil	400 bbl.	2012	
P-T1502	P-T1502	Crude oil	400 bbl.	2012	
P-T1503	P-T1503	Crude oil	400 bbl.	2012	
P-T1504	P-T1504	Crude oil	400 bbl.	2012	
P-T1505	P-T1505	Crude oil	400 bbl.	2012	
P-T1506	P-T1506	Crude oil	400 bbl.	2012	
P-T1507	P-T1507	Crude oil	400 bbl.	2012	
P-T605A	P-T605A	Crude oil	400 bbl.	2012	

EU	Point	Normal Contents	Capacity	Installed Date
P-T605B	P-T605B	Crude oil	400 bbl.	2012
P-T501	P-T501	Jet fuel	25,700 bbl.	1969
46-T502	46-T502	Renewable Distillate	10,000 bbl.	2021
46-T503	46-T503	Renewable Distillate	10,000 bbl.	2021
46-T504	46-T504	Renewable Distillate	55,000 bbl.	2021
46-T505	46-T505	Renewable Distillate	55,000 bbl.	2021

EUG 19 – Internal Floating Roof Tanks, Subject to 40 CFR Part 63, Subpart CC (Group 2 Vessels)

EU	Point	Normal Contents	Capacity	Installed Date
P-T603	P-T603	Crude oil	431 bbl.	2017
P-T604A	P-T604A	Crude oil	400 bbl.	2017
P-T604B	P-T604B	Crude oil	400 bbl.	2017

EUG 20 - Product Loading Facility I Vapor Control, Subject to 40 CFR Part 63 Subpart CC

EU	Point	Description	Installed Date
P-PLF1	P-PLF1	Product Loading Facility / Vapor Recovery Unit	6/86

EUG 21 – Cone Roof Tank, Subject to 40 CFR Part 63 Subpart CC (Group 2 Storage Vessels); or 40 CFR Part 60, Subpart QQQ

EU	Point	Normal Contents	Capacity	Installed Date
P-T2051	P-T2051	Diesel / 100-W Solvent / Wastewater	20,000 bbl.	1992

EUG 22 – Internal Floating Roof Tank, Subject to NSPS Subpart Kb; Subject to 40 CFR Part 63 Subpart CC

EU	Point	Normal Contents	Capacity	Installed Date
P-T1324	P-T1324	Wastewater	66,590 bbl.	6/15/74 (mod 2021

EUG 23 – External Floating Roof Tanks, Subject to 40 CFR Part 63, Subpart CC (Group 2 Vessels)

EU	Point	Normal Contents	Capacity	Installed Date
		Renewable Feedstocks		
46-T500	46-T500	(soybean oil, animal fats	55,000 bbl.	2021
		plant oils, etc.)		
		Renewable Feedstocks		
46-T501	46-T501	(soybean oil, animal fats	55,000 bbl.	2021
		plant oils, etc.)		

<u>EUG 24 – External Floating Roof Tank, Subject to 40 CFR Part 60 Subpart Kb, Subject to 40 CFR Part 63 Subpart CC</u>

EU	Point	Normal Contents	Capacity	Installed Date
P-T2003	P-T2003	Wastewater	90,000 bbl.	1992 (mod 2021)

EUG 29 - Fugitive Emissions Subject to Monitoring Requirements (40 CFR Part 63 Subpart CC and NSPS Subpart GGGa)

EU	Point	Equipment	Estimated Number of Items	Installed Date
			1000 gas/vapor valves	
			1000 light liquid valves	2009 -
EU-3726A	EU-3726A	GHDS Unit Fugitives	4100 connectors	2009 -
			15 light liquid pumps	2010
			10 sampling connections	
			500 gas/vapor valves	
			700 light liquid valves	
EU-3752A	EU-3752A	Benfree Unit Fugitives	720 flanges	2013
			11 light liquid pumps	
			5 relief valves	
			500 gas valves	
			1500 light liquid valves	
			50 heavy liquid valves	
EU-3736A	EU-3736A	VOC Leakage at Diesel	1,300 flanges	2007
E0-3730A	E0-3730A	Hydrotreater Unit	20 light liquid pumps	2007
			5 heavy liquid pumps	
			2 compressors	
			10 gas relief valves	
			330 gas valves	
			130 light liquid valves	
EH 2720D	ELI 2730D	VOC Leakage at ROSE	400 heavy liquid valves	2017
EU-3728B	EU-3728B	Unit	1,000 flanges	2017
			3 light liquid pumps	
			10 heavy liquid pumps	

EUG 30 - Fugitive Emissions Subject to Monitoring Requirements (40 CFR Part 63 Subpart CC, and/or NSPS Subpart GGG)

EU	Point	Equipment	Estimated Number of Items	Installed Date
			10 light liquid valves	
			350 heavy liquid valves	-
		VOC Leakage at Bulk	1100 flanges	1
EU-3706A	EU-3706A	Gasoline Terminal	25 light liquid pumps	1978
			1 compressor	1
			15 gas relief valves	
			500 gas valves	
ELL 2722 A	E11 2722 A	WOOL1 ECCL	2000 light liquid valves	1070
EU-3722A	EU-3722A	VOC Leakage at FCCU	4000 flanges	1978
			35 light liquid pumps	
			1511 gas valves	
			1506 light liquid valves	
			232 heavy liquid valves	
EU-3725A	EU-3725A	VOC Leakage at	5923 flanges	2006
EU-3/23A	EU-3/23A	Hydrocracker	40 light liquid pumps	2000
			7 heavy liquid pumps	
			22 gas relief valves	
			4 compressor seals	
			100 gas valves	
			1600 light liquid valves	
			50 heavy liquid valves	
EU-3732A	EU-3732A	VOC Leakage at No. 1	5500 flanges	1958
EU-3/32A	EU-3/32A	Crude Unit and CVU	30 light liquid pumps	1936
			15 heavy liquid pumps	
			1 compressor seal	
			15 gas relief valves	
			1500 gas valves	
			1500 light liquid valves	
			100 heavy liquid valves	
		VOC Leakage at No. 2	4000 flanges	
EU-3733A	EU-3733A	Crude Unit and No. 2	25 light liquid pumps	2007
		Vacuum Unit	20 light liquid pumps	
			20 heavy liquid pumps	
			15 gas relief valves	
			1 compressor seal	

EU	Point	Equipment	Estimated Number of Items	Installed Date
			2500 gas valves	Date
			2500 gas valves 2500 light liquid valves	1
		VOC Leakage at CCR	100 heavy liquid valves	1
EU-3734A		Platformer, No. 1 Splitter,	8750 flanges	-
	EU-3734A	LSR Hydrotreater, Naphtha	60 light liquid pumps	2007
		Unifiner, and Hydrogen	10 heavy liquid pumps	-
		Plant	1 compressor seal	-
			15 gas relief valves	-
			1500 gas valves	
EU-3735A EU-3735A		VOC Leakage at	1500 light liquid valves	-
		Alkylation Unit, Olefin	50 heavy liquid flanges	-
	EU-3735A	Treater, and Propylene	4750 flanges	1968
		Splitter, LPG Loading, &	15 light liquid pumps	1
		LPG Storage	30 gas relief valves	1
			120 gas valves	
	EU-3740A	VOC Leakage at Steam, Utilities, and Flare System	150 light liquid valves	1
			20 heavy liquid valves	1
EU-3740A			250 flanges	1968
			25light liquid pumps	1
			5 heavy liquid pumps	•
			50 gas relief valves	
			200 gas valves	
			200 light liquid valves	1
ELL 2707	EH 2707	VOC Looks as at LDC Unit	5 heavy liquid valves	1050
EU-3707	EU-3707	VOC Leakage at LPG Unit	4600 flanges	1958
			15 light liquid pumps	
			9 gas relief valves	
			1000 gas valves	
			1020 light liquid valves	
EU-3727	EU-3727	VOC Leakage at RFG	20 heavy liquid valves	1958
EU-3727	EU-3727	System	1550 flanges	1936
			12 light liquid pumps	
			5 gas relief valves	
			1560 light liquid valves	
			5 heavy liquid valves	1958
EU-3710	EU-3710	VOC Leakage at Tank	5215 flanges	(mod
LO-3/10	LO-3/10	Farm	57 light liquid pumps	2014 and
			10 relief valves	2021)
			10 open-ended lines	

EU	Point	Equipment	Estimated Number of Items	Installed Date
EU-3711B	EU-3711B	VOC Leakage at Asphalt Unit	550 heavy liquid valves 2525 flanges	1970
EU-3732B	EU-3732B	VOC Leakage at No. 1 Crude Unit	230 light liquid valves 780 heavy liquid valves 1142 flanges 7 light liquid pumps 35 heavy liquid pumps	1958
EU-3734B	EU-3734B	VOC Leakage at CCR Platformer Area	30 light liquid valves 70 flanges 5 heavy liquid pumps	1965 (mod 2018)
EU-3735B	EU-3735B	VOC Leakage at Alkylation Unit	40 open-ended valves 6 heavy liquid pumps 32 relief valves 1623 flanges	1965
EU-3711C	EU-3711C	VOC Leakage at Asphalt Unit	208 heavy liquid valves 625 flanges 26 heavy liquid pumps	2002
EU-3701	EU-3701	VOC Leakage at Renewable Feedstock and Distillate Product Handling Facilities	9 gas valves 187 heavy liquid valves 4 gas relief valves 442 flanges 24 heavy liquid pumps	2021

 $EUG~35-Fugitive~Emissions~Subject~to~Monitoring~Requirements~(40~CFR~Part~63~Subpart~CC~and~NSPS~Subpart~GGG)\\-Amine~Treating~Unit,~Sour~Water~Stripper,~Sulfur~Recovery~Unit,~and~Tail~Gas~Treating~Unit\\$

EU	Point	Equipment	Estimated Number of Items	Installed Date
EU-3740C	EU-3740C	VOC Leakage at Amine Treating Unit, Sour Water Stripper, Sulfur Recovery Unit, and Tail Gas Treating Unit	177 gas valves 100 light liquid valves 25 heavy liquid valves 1,570 flanges 20 light liquid pumps 15 heavy liquid pumps	2006

 $EUG\,36$ - Steam Boilers Subject to NSPS Part 60 Subpart Dc and Subpart J and MACT Part 63 Subpart DDDDD

EU	Point	Equipment	MMBTUH	Installed Date
40-H1101	40-H1101	Indeck steam boiler	99.2	2009*
22-B131	22-B-131	FCCU Boiler	99.8	2014**

^{*} This unit was initially constructed in 2003.

EUG 37 – Fuel Gas Combustion Devices Subject to NSPS Part 60 Subpart Ja and MACT Part 63 Subpart DDDDD

EU	Point	Equipment	MMBTUH	Installed Date
P-GHH2601	GHH-2601	GHDS Splitter Reboiler	44	2009-10
P-GHH2602	GHH-2602	GHDS Reactor Heater	16.8	2009-10
P-GHH2603	GHH-2603	GHDS Stabilizer Reboiler	16.8	2009-10
REFORMER	REFORMER	Hydrogen Plant Reformer	126	2015

EUG 38 - Fuel Gas Combustion Devices, Subject to NSPS Subpart J and MACT Part 63 Subpart DDDDD

EU	Point	Equipment	MMBTUH	Installed Date
P-CH1	P-CH1	Crude fractionation heater	128	1953
P-CH2	P-CH2	Crude charge heater	78	1960
P-CH3	P-CH3	Crude preflash reboiler	47	1952
P-CH121	P-CH121	Vacuum charge heater	44	1959
P-JH1	P-JH1	Hydrocracker reactor heater	69.44	1965
P-JH2	P-JH2	Hydrocracker reactor heater	69.44	1965
P-JH101	P-JH101	Hydrocracker fractionator reboiler	70	1965
P-PH3	P-PH3	Unifiner stripper reboiler	41.2	1957
P-HH1	P-HH1	Hysomer heater	32.5	1957
P-H152	P-H152	No. 2 splitter reboiler	30	1952
P-5H1	P-5H1	Alkylation depropanizer reboiler	86	1969
P-H1302	P-H1302	Tank 101 heater	10	1957
P-H1303	P-H1303	Tank 101 heater	16.8	1972
P-HT120	P-HT120	Tank 120 heater	1	1945
P-HT265	P-HT265	Tank 265 heater	1	1959
P-HT601	P-HT601	Tank 601 heater	0.7	1972
P-HT1321	P-HT1321	Tank 1321 heater	0.7	1971
P-HT1323	P-HT1323	Tank 1323 heater	0.7	1972
P-HT1324	P-HT1324	Tank 1324 heater	5	1972

^{**} This unit was initially constructed in 2006.

EU	Point	Equipment	MMBTUH	Installed Date
P-H350	P-H350	CCR charge heaters, H350, H351 and H352 *	172 hourly 142.81 annual avg	1989
P-PH2	P-PH2	Unifiner charge heater	43.5 hourly 29.0 annual avg	1989
P-H601	P-H601	ROSE heater	48.6 hourly 37.5 annual avg	1985
P-H1301	P-H1301	Tank 107 heater	2.82	1989
P-1H4	P-1H4	FCCU feed preheater	121	1976
40-B130	40-B130	Nebraska Package Boiler	98.3	2007**
P-VH101	P-VH101	No. 2 Vacuum charge heater	84	2007
P-DHH801	P-DHH801	Hydrotreater charge heater	45.29	2007
P-DHH802	P-DHH802	Fractionator charge heater	67.93	2007
P-H356	P-H356	CCR No. 2 Interheater	56	2007
P-JH301	P-JH301	Fractionator charge heater	40	2007
P-CH151	P-CH151	Crude charge heater	78	2007
P-H48001	P-H48001	SRU Hot Oil Heater	73	2006
P-HT134	P-HT134	Tank 134 heater	8.4	1991
P-HT136	P-HT136	Tank 136 heater	8.4	1991
P-HT264	P-HT264	Tank 264 heater	1	1996

^{*} P-H351 and P-H352 are included in this rated capacity

Emissions limits for HT134, HT136, and HT264 were based on burning natural gas. WRC is authorized to use NSPS refinery fuel gas in these units.

EUG 39 - Fuel Gas Combustion Device, Subject to 40 CFR Part 63 Subpart LLLLL

EU	Point	Equipment	MMBTUH	Installed Date
P-F1301	P-F1301	Asphalt oxidizer incinerator	16.8	1971

EUG 43 – Asphalt Unit Heater, Subject to MACT Part 63 Subpart DDDDD

EU	Point	Equipment	ММВТИН	Installed Date
P-H1331	P-H1331	Asphalt Unit hot oil heater	8.4	2002

^{**} This unit was initially constructed in 1984.

EUG 45 – Flares, Subject to 40 CFR Part 60, Subpart Ja and 40 CFR Part 63, Subpart CC

EU	Point	Equipment	Installed Date
P-FS1503	P-FS1503	Hydrocracker Flare	2006
P-FS1403	P-FS1403	West Flare	2013*

^{*} The West flare was a modification of the North Flare.

EUG 46 – Fuel Gas Combustion Devices Subject to NSPS Part 60 Subpart Ja and MACT Part 63 Subpart DDDDD

EU	Point	Equipment	MMBTUH	Installed Date
52-H01	52-H01	Benfree Reboiler	85	2013

EUG 47 - Steam Boiler Subject to NSPS Part 60 Subpart Dc and Subpart Ja and MACT Part 63 Subpart DDDDD

EU	Point	Equipment	MMBTUH	Installed Date
40-B130	40-B130	Wabash package boiler	97	2012

EUG 48 – Stationary Reciprocating Internal Combustion Engines Subject to NSPS Subpart IIII and NESHAP Subpart ZZZZ

EU	Point	Point Description	Capacity HP	Manufacture Date
CE-2	CE-2	Diesel wastewater pump	75	2014
CE-3	CE-3	Diesel wastewater pump	78	2009
CE-4	CE-4	Diesel wastewater pump	78	2011
CE-5	CE-5	Backup air compressor	446	2016
CE-6	CE-6	Diesel water pump	74	2014
CE-8	CE-8	Backup air compressor	446	2016
CE-9	CE-9	Diesel water pump	36	2014
CE-10	CE-10	Backup air compressor	49	2012
CE-11	CE-11	Diesel water pump	66	2009
CE-12	CE-12	Air compressor generator	525	2015
CE-13	CE-13	Diesel water pump	66	2009
CE-14	CE-14	Diesel water pump	67	2015
CE-15	CE-15	Backup air compressor	49	2009
40-C1168	40-C1168	Air compressor	580	2020

EUG 51 – Miscellaneous Process Vents

EU	Point	Equipment	Installed Date
P-VENT7	P-VENT7	Asphalt light ends recovery sump	1970

EUG 53 – Process Vents Subject to Permit Limitations and 40 CFR Part 63 Subpart UUU

EU	Point	Equipment	Installed Date
P-VENT6	P-VENT6	CCR Regenerator vent	1989
P-VENT8	P-VENT8	CCR Depressurization and purge vent	1989

EUG 54 – Molten Sulfur Pit

EU	Point	Normal Contents	Capacity	Installed Date
P-SP301	P-SP301	Sulfur	348.7 LT	2006

The SRU is rated at 50 LT/D but is only used when the adjacent TKI plant is not operating.

EUG 56 – Wastewater System Subject to 40 CFR Part 63 Subpart CC

EU	Point	Equipment	Installed Date
P-WW1	P-WW1	Process wastewater systems and open sewers	various

EUG~57-Wastewater~Systems~Subject~to~NSPS~Subpart~QQQ~and~40~CFR~Part~63~Subpart~CC

EU	Point	Equipment	Installed Date
		CCR drain	1989
	EH WWO	D-208 drain	1993
EU-WW2	EU-WW2	S-1450 drain	1993
		S-1451 drain	1991

EUG 58 - Open API Separator Subject to NSPS Part 60 Subpart QQQ

EU	Point	Equipment	Installed Date
P-API1	P-API1	Open API separator	1968

EUG 59 - Covered API Separator Subject to NSPS Part 60 Subpart QQQ

EU	Point	Equipment	Installed Date
P-API2	P-API2	Covered API separator	1978

EUG 60 – Wastewater Systems Subject to NSPS Subpart QQQ and 40 CFR Part 63 Subpart CC in SRU, Diesel Hydrotreater Area, Vacuum Unit 2 Area, GHDS Unit, Hydrocracker Unit, Benfree Unit, and Hydrogen Plant

EU	Point	Equipment	Installed Date
EU-WW3	ES-WW3	Closed Process drains (SRU)	2006
EU-WW3	E3-WW3	Closed process junction boxes (SRU)	2006
EU-WW4	ES-WW4	25 P-trap drains (DHDU)	2007
EU-WW4	E5-WW4	2 Junction boxes (DHDU)	2007
EU-WW5	EG WWG	25 P-trap drains (No. 2 Crude Unit Vacuum Unit)	2007
EU-WW3	ES-WW5	2 Junction boxes (No. 2 Crude Unit Vacuum Unit)	2007
EU-WW6	ES-WW6	10 P-trap drains (GHDS)	2009-10
EU-WW6	E2-W W 0	2 Junction boxes (GHDS)	2009-10
EU-52WW	ES-52WW	Benfree Unit drains	2013
EU-53WW	EU-53WW Hydrocracker Unit drains		2015
EU-47WW	EU-47WW	Hydrogen Plant Unit drains	2015

$EUG\ 61$ – Benfree Unit Oil-Water Separator Subject to 40 CFR Part 60 Subpart QQQ and 40 CFR Part 63 Subpart CC

EU	Point	Equipment	Installed Date
52-T05	52-T05	Benfree Unit Separator	2013

EUG 64 – GHDS Oil-Water Separator Tank Subject to NSPS QQQ and 40 CFR 63, Subpart CC

EU	Point	Equipment	Installed Date
GHT- 2603	GHT- 2603	GHDS Unit oil-water separator tank	2009-10

EUG 66 - Cooling Towers Subject to 40 CFR Part 63 Subpart CC

EU	Point	Equipment	Installed Date
P-CWT1	P-CWT1	Crude Unit cooling tower	1958
P-CWT3	P-CWT3	FCCU cooling tower	1958
P-CWT5	P-CWT5	Alky Unit cooling tower	1968

^{*} P-CWT2, Vacuum unit cooling tower, was demolished.

EUG 68 -Cooling Towers Subject to 40 CFR Part 63 Subpart CC

EU	Point	Equipment	Installed Date
P-CWT6	P-CWT6	GHDS Unit cooling tower	2009-10
52-CT	52-CT	Benfree Unit cooling tower	2013
P-CWT4	P-CWT4	Hydrocracker cooling tower	2006
P-CW14	P-CW14	Hydrocracker cooling tower	(Replaced 2016)

EUG 80 - Non-gasoline Loading Racks

EU	Point	Equipment	Installed Date
P-LR2T	P-LR2T	Gas oil truck unloading rack	1958
P-LT2R	P-LT2R	Gas oil rail unloading rack	1958
P-LR3T	P-LR3T	Solvent truck loading rack	1958
P-LT3R	P-LT3R	Solvent rail loading rack	1958
P-LR5T	P-LR5T	Asphalt truck loading rack	1960
P-LR5R	P-LR5R	Asphalt/slurry rail loading rack	1960
P-LR6T	P-LR6T	Slurry truck loading rack	1960

EUG 81 - Non-gasoline Loading Racks

EU	Point	Equipment	Installed Date
P-LR4T	P-LR4T	JP-8 truck loading rack	1996
P-LR7R	P-LR7R	Distillate railcar loading rack	2021

EUG 82 – Molten Sulfur Loading Racks

EU	Point	Equipment	Installed Date
P-SLRR	P-SLRR	Sulfur railcar loading rack	2006
P-SLRT	P-SLRT	Sulfur truck loading rack	2006

EUG 85 – FCCU Regenerator Subject to NSPS Subpart J and 40 CFR Part 63 Subpart UUU

EU	Point	Equipment	Installed Date
P-1ME258	P-1ME258	FCCU catalyst regenerator	1978

EUG 86 – Catalyst Hopper Vents

EU	Point	Equipment	Installed Date
P-FCCUHOP	P-FCCUHOP	FCCU catalyst hopper	2016
P-HCATLOAD	P-HCATLOAD	Fresh Hydrocracker catalyst loading	2021
P-HCATUNLOAD	P-HCATUNLOAD	Spent Hydrocracker catalyst unloading	2021

EUG~87-SRU~Tail~Gas~Incinerator~Subject~to~NSPS~Subpart~J~and~40~CFR~Part~63~Subpart~UUU

EU	Point	Equipment	MMBTUH	Installed Date
P-TGIS1	P-TGIS1	SRU Tail Gas Incinerator	7.55	2006

EUG 90 – Miscellaneous Insignificant Heaters

Heater Designation	Location	MMBTUH
IH-1	Kyle house	0.10
IH-2	Main office	0.375
IH-3	Webb house	0.10
IH-4	Laboratory	0.191
IH-5	Laboratory	0.15
IH-6	Laboratory	0.15
IH-7	Laboratory	0.15
IH-8	Laboratory	0.15
IH-9	Laboratory	0.191
IH-10	Electrical shop	0.14
IH-11	Maintenance office	0.15
IH-12	Maintenance office	0.14
IH-13	East shop	2.25
IH-14	West shop	2.25

EUG 91 – Miscellaneous Reciprocating Engines

Unit ID	Location	Unit Description	Unit Capacity
IE-1	Wastewater Plant	Caterpillar 3406B stormwater pump	300 HP
IE-2	Portable	Briggs/Stratton 195432 emergency generator	8 HP
IE-3	Portable	Generac 09441-2 emergency generator	5 HP
P-1183	Firewater Pump House	Cummins NT 855-F4 fire water pump	340 HP
P-1184	Firewater Pump House	Caterpillar 3406B fire water pump	375 HP
P-1185	Firewater Pump House	Cummins QSM11 fire water pump	400 HP

EUG 92 – Miscellaneous Insignificant Storage Tanks

Unit ID	Location	Capacity, Gallons	Normal Contents
IT-1	Shop	2,000	Gasoline
IT-2	Shop	1,000	Diesel
IT-3	FCCU	1,975	Lube oil
IT-4	Platformer	1,321	Lube oil
IT-5	FCCU	1,000	Lube oil
T-1417	Truck rack	2,000	Fuel additive
IT-7	#2 Crude Unit	1,000	Corrosion inhibitor
IT-8	#2 Crude Unit	750	Corrosion inhibitor
IT-9	FCCU	1,000	Corrosion inhibitor
IT-10	FCCU	1,000	Corrosion inhibitor
IT-11	#1 Crude Unit	2,000	Embreak 2W157
IT-13	72 Manifold	250	Hi-Tec 4551
T-1414	Truck rack	6,000	Fuel additive
T-1416	Truck rack	6,000	Fuel additive
IT-17	Crude Vacuum Unit	550	Non-hydrocarbon
IT-18	Hydrocracker	3,171	Mystik Synguard
IT-19	ROSE Unit	2,325	Solvent cleaner
IT-20	Boilerhouse	400	Non-hydrocarbon
IT-21	FCCU	1,600	Corrosion inhibitor
IT-22	Lt. Oils Blender	765	Corrosion inhibitor
IT-23	FCCU	750	Corrosion inhibitor
IT-24	#1 Crude Unit	1,000	Corrosion inhibitor
IT-25	#1 Crude Unit	750	Corrosion inhibitor
IT-26	#2 Crude Unit	750	Corrosion inhibitor
IT-27	#2 Crude Unit	1,000	Corrosion inhibitor
IT-28	72 Manifold	250	Fuel additive
IT-29	#1 Crude Unit	750	Corrosion inhibitor
IT-30	#2 Crude Unit	1,000	Corrosion inhibitor
IT-31	#2 Crude Unit	200	Corrosion inhibitor
IT-32	Platformer	560	Corrosion inhibitor
IT-33	Alky Unit	564	Corrosion inhibitor
IT-34	FCCU	560	Corrosion inhibitor
IT-35	72 Manifold	673	Corrosion inhibitor

Unit ID	Location	Capacity, Gallons	Normal Contents
IT-36	FCCU	1,000	Corrosion inhibitor
IT-37	Products Handling	560	Corrosion inhibitor
T-1413	Truck rack	8,000	TFA-4906
IT-40	FCCU	6,428	TFA-4906
IT-41	#1 Crude Unit	2,000	Anti-foulant
IT-42	#2 Crude Unit	1,000	Anti-foulant
IT-43	FCCU	300	Non-hydrocarbon
IT-44	Alky Unit	200	Non-hydrocarbon
IT-45	#1 Crude Unit	1,000	Non-hydrocarbon
T-1418	Truck rack	1,000	Fuel additive
T-6092	72 Manifold	5,600	Fuel additive
T-1426	Truck rack	1,000	Fuel additive
P-T141	Diesel blending	8,000	Cetane
P-T2001	Asphalt blending	21,000	Oily wastewater
P-T2002	Asphalt blending	4,200	Oily wastewater
P-T1901	Firefighter training	7,140	Heavy hydrocarbons

EUG 93 – Miscellaneous Insignificant Process Vents

Unit ID	Description
DAVENT	Reformer Deaerator Vent
BDVENT	Reformer Blowdown Vent
PSA Hydrogen	Reformer PSA Hydrogen Vent

SECTION V. EMISSIONS

The facility operates up to 8,760 hours per year. Emissions were estimated using the following methods and references:

- Catalyst hopper vent emissions (EUG-86) were calculated using factors from AP-42 (6/06), Table 11-12.
- Renewable feedstock and distillate product tank VOC emissions were calculated using TANKESP software, which incorporates the methods of AP-42 (3/20), Section 7.1.
- Engine emissions in EUG-48 were calculated using the limits of NSPS Subpart IIII for NOx, CO, VOC, and PM, and AP-42 (10/96), Section 3.3 for SO₂. Subpart IIII references standards in 40 CFR § 1039.101. The limits were used as the latest (Tier 4) standards. Annual emissions were based on 500 hours per year operations except for Engine 40-C1168, which are based on continuous operations.

EU	Point	Point Description	Capacity HP	NOx lb/hp-hr	CO lb/hp-hr	VOC lb/hp-hr
CE-5	CE-5	Backup air compressor	446	0.0007	0.0058	0.0003
CE-6	CE-6	Diesel water pump	74	0.0077	0.0082	0.0025
CE-8	CE-8	Backup air compressor	446	0.0007	0.0058	0.0003
CE-9	CE-9	Diesel water pump	36	0.0077	0.0082	0.0025
CE-10	CE-10	Backup air compressor	49	0.0077	0.0082	0.0025
CE-11	CE-11	Diesel water pump	66	0.0077	0.0082	0.0025
CE-12	CE-12	Air compressor generator	525	0.0011	0.0058	0.0003
CE-13	CE-13	Diesel water pump	66	0.0077	0.0082	0.0025
CE-14	CE-14	Diesel water pump	67	0.0077	0.0082	0.0025
CE-15	CE-15	Backup air compressor	49	0.0077	0.0082	0.0025
40-C1168	40-C1168	Air Compressor	580	0.0007	0.0058	0.0003

- Cooling tower emissions were calculated using Table 5.1-3 of AP-42 (4/15) for VOC and the Reisman-Frisbie method for PM.
- Emergency generator engine emissions were calculated using manufacturer data except for VOC, and AP-42 (10/96), Section 3.3 for VOC. Emissions calculations are shown for maximum expected hours of operation (500 hours per year).
- Vapor combustor unit NOx and CO emissions were based on AP-42 (1/95), Section 13.5, for industrial flares: 0.068 lb/MMBTU NOx and 0.37 lb/MMBTU CO. Heat release in the combustor is 7.5 MMBTUH with a maximum loading rate of 878.7 bbl/hr (36,900 gallons per hour), combustion of 10.05 lb/VOC per 1,000 gallons, and a heating value of gasoline of 20,200 BTU/lb.
- Tank emissions were calculated using either the EPA program, TANKS4.09d, or the tanks emission calculation software, TankESP (which utilizes the methods and factors of AP-42 (3/20), Section 7.1).
- Emissions from P-CH151 were based on manufacturer guarantees for NOx and CO (0.04 lb/MMBTU NOx and 0.04 lb/MMBTU CO); AP-42 (7/98) Section 1.4 for VOC; and 162 ppm sulfur in fuel for SO₂.
- Emissions from heaters in EUG-38 were based on the regulatory limit found in OAC 252:100-33-2 for NOx (0.20 lb/MMBTU) or on the values in the table on Page 4; AP-42 (7/98) Section 1.4 for CO and VOC; and NSPS Subpart J (162 ppm sulfur in fuel) for SO₂.
- Emissions from the Boiler #4 ("Nebraska Boiler," 40-B130) were based on factors in AP-42 (7/98), Section 1.4, with a 10% safety factor for all emissions except SO₂; SO₂ emissions were based on 162 ppm sulfur in fuel, 1,020 BTU/SCF fuel gas heating value (note: this heating value is higher than the more conservative 800 BTU/SCF used for all other fuel-burning equipment).

- Emissions from the Indeck Boiler were based on factors in AP-42 (7/98), Section 1.4, with a 10% safety factor for all emissions except NOx and SO₂; SO₂ emissions were based on 162 ppm sulfur in fuel, while NOx was based on 0.055 lb/MMBTU.
- Emissions from the Wabash Boiler were based on factors in AP-42 (7/98), Section 1.4, with a 10% safety factor for all emissions except NOx and SO₂; SO₂ emissions were based on 162 ppm sulfur in fuel, while NOx was based on 0.04 lb/MMBTU.
- Emissions from the BenFree Reboiler were based on factors in AP-42 (7/98), Section 1.4, with a 10% safety factor for all emissions except NOx and SO₂; SO₂ emissions were based on 162 ppm sulfur in fuel, while NOx was based on 0.04 lb/MMBTU.
- Except for the Indeck Boiler, Boiler #4, Wabash Boiler, Heater P-CH-151, the FCCU, the SRU, flares, and stationary engines, all other combustion emissions were based on AP-42 (7/98), Table 1.4-1. SO₂ emissions from NSPS-applicable combustion units assumed 162 ppm sulfur in fuel and 800 BTU/SCF heating value. The facility is taking reduced NOx limits for several heaters as listed in Section I.
- Fugitive VOC leakages from valves, etc., were estimated using factors in the EPA publication, "Protocol for Equipment Leak Emission Estimates" (EPA-453/R-95-017), Table 2-2.
- Wastewater system emissions were estimated using factors from AP-42 (1/95), Table 9.1-2 and the Background Information Document (BID) for NSPS Subpart QQQ.
- Gasoline loading emissions were based on the MACT limitation.
- Vent emissions were based on stack testing.
- Non-gasoline loading rack emissions were estimated using the techniques of "Gasoline Distribution Industry (Stage I) Background Information for Promulgated Standards" (EPA-453/R-94-002b).
- Asphalt blowstill emissions were calculated based on AP-42 (1/95), Section 5.1.2.7.
- Flare SO₂ emissions were based on the NSPS Subpart Ja limit of 162 ppm sulfur, while all other emissions were based on AP-42 (1/95) Section 13.5 factors.
- SRU SO₂ emissions were based on the NSPS Subpart J limit of 250 ppm SO₂, while CO emissions were based on manufacturer guarantees of 300 ppm, and NOx, VOC, and PM emissions were based on AP-42 (7/98) Section 1.4 factors with a 50% safety factor added.
- Emissions from the heaters in the GHDS Unit (EUG-37) are manufacturer guarantees taken from Permit No. 98-117-TV (M-10).
- Benfree Unit Cooling tower emissions were based on a circulation rate of 1,200 GPM, with VOC emissions factors from AP-42 (1/95) Section 5.1 and PM emission factors from the Reisman-Frisbie method.

- The Benfree Unit Oil-water separator emissions were based on a circulation rate of 71 GPM, with VOC emissions factors from AP-42 (1/95) Section 5.1.
- Fugitive VOC leakage calculations used estimated numbers of new components and emissions factors from EPA's "1995 Protocol for Equipment Leak Emission Estimates," Table 2-4. Control efficiencies are from TCEO guidance.
- The Benfree Unit Process drain VOC emissions were based on an estimated 25 new drains, and an emission factor and control efficiency from EPA's "VOC Emissions from Petroleum Refinery Wastewater Systems Background Information for Proposed Standards" (EPA-450/3-85-001a).
- The FCCU emissions are taken from Permit No. 98-117-C (PSD). Stack testing on the unit measured the discharge flow at 43,669 DSCFM. Hourly emissions were calculated using 500 ppm CO, or 95.28 lb/hr. Annual emissions were calculated using 90 ppm CO, or 75.12 TPY.
- WRC has updated the calculation methodology for estimating the allowable emission rates of particulate matter with an aerodynamic diameter of less than 10 microns ("PM₁₀") and less than 2.5 microns ("PM_{2.5}") for all cooling towers and fuel gas-fired external combustion devices, excluding the Hydrogen Plant Reformer (Point ID: REFORMER) and the Asphalt Oxidizer Incinerator (Point ID: P-F1301). The calculations will now utilize 2,000 ppm total dissolved solids and 0.005% drift for induced draft cooling towers as shown in AP-42 (1/95) Section 13.4. The PM₁₀ / PM_{2.5} partition will be as stated in "Calculating Realistic PM₁₀ Emissions from Cooling Towers" (Joel Reisman and Gordon Frisbie, 2001 AWMA Abstract No. 216.)

EUG 1 – Cone Roof Tanks, Subject to 40 CFR Part 63 Subpart CC (Group 2 Storage Vessels)

EU	Point	Normal Contents	VC	OC .
EU	Point	Normai Contents	lb/hr	TPY
P-T108	P-T108	Jet kerosene	0.07	0.67
P-T111	P-T111	Jet kerosene	0.03	0.05
P-T162	P-T162	JP-8 additive	0.01	0.01
P-T252	P-T252	Slurry oil	0.01	0.01
P-T253	P-T253	High-sulfur diesel	0.10	0.24
P-T256	P-T256	Jet kerosene	0.02	0.05
P-T260	P-T260	Slurry oil	0.03	0.11
P-T262	P-T262	Gas oil	0.11	0.14
P-T263	P-T263	Slop oil	0.01	0.05
P-T1441	P-T1441	Jet kerosene	0.43	0.43
P-T269	P-T269	Biodiesel	11.55	0.36
TOT	TALS		0.90	12.86

EUG 2 – Cone Roof Tanks, Subject to 40 CFR Part 63, Subpart LLLLL (Group 2 Asphalt Storage Tanks)

TOT I	Doint	Point Normal Contents	VOC	
EU	Point		lb/hr	TPY
P-T101	P-T101	Asphalt	0.25	1.11
P-T107	P-T107	Asphalt	0.16	0.69
P-T120	P-T120	Asphalt	0.01	0.04
P-T265	P-T265	Asphalt	0.32	1.39
TOT	TALS		0.74	3.23

EUG 3 – Cone Roof Tanks, Constructed 6/12/73 to 5/18/78 (NSPS Subpart K), Not Subject to 40 CFR Part 63 Subpart CC (Group 2 Storage Vessels)

EII Deina		Name I Cartanta	V	OC	
EU	Point	Normal Contents	lb/hr	lb/hr TPY	
P-T126	P-T126	FCCU charge	39.83	87.22	
P-T202	P-T202	FCCU charge	41.74	91.41	
P-T1323	P-T1323	Asphalt	11.26	24.66	
TOT	TALS		92.83	203.29	

EUG 4 – Cone Roof Tanks, Subject to 40 CFR Part 63, Subpart LLLLL; 40 CFR Part 63, Subpart CC (Group 2 Storage Vessels); 40 CFR Part 60, Subpart QQQ

TOTI	Doint	-	VO	OC
EU	Point	Normal Contents	lb/hr	TPY
P-T136	P-T136	Asphalt, Diesel, Wastewater	16.12	2.20
P-T134	P-T134	Asphalt, Diesel, Wastewater	0.05	0.24
TOT	ΓALS		16.17	2.42

EUG 5 – Cone Roof Tanks, Constructed 5/18/78 to 7/22/84 (NSPS Subpart Ka), Not Subject to 40 CFR Part 63 Subpart CC (Group 2 Storage Vessels)

EII Doint	Normal Contents	VOC		
EU	Point	Normal Contents	lb/hr	TPY
P-T264	P-T264	Gas oil	8.34	18.28
P-T601	P-T601	Asphalt resin	8.07	17.68
P-T1321	P-T1321	Asphalt	11.02	24.14
TOTALS			27.43	60.10

EUG 7 – Cone Roof Tanks, Constructed after 7/23/84 (NSPS Subpart Kb), Not Subject to 40 CFR Part 63 Subpart CC (Group 2 Storage Vessels)

TOTAL	Doint	Normal Contents	VOC	
EU	Point	Normal Contents	lb/hr	TPY
P-T1474	P-T1474	Diesel additive	0.73	1.61
P-T1475	P-T1475	High-sulfur diesel	0.17	0.74
P-T200	P-T200	Diesel	0.39	1.70
TOTALS			1.29	4.05

EUG 8 - Internal Floating Roof Tanks, Subject to NSPS Subpart K, Subject to 40 CFR Part 63 Subpart CC (Group 1 Storage Vessels), and 40 CFR Part 63, Subpart WW

EII Doin	Doint	Normal Contents	VOC	
EU	Point	Normal Contents	lb/hr	TPY
P-T67	P-T67	Crude oil	3.83	8.38
P-T68	P-T68	Crude oil	3.83	8.38
P-T69	P-T69	Crude oil	3.83	8.38
TOTALS			11.49	25.14

EUG 9 – Internal Floating Roof Tanks Constructed Prior to 6/12/73, Subject to 40 CFR Part 63 Subpart CC (Group 1 Storage Vessels) and Subpart WW

EU	Point	Normal Contents	VC	VOC		
EU	Point	Normal Contents	lb/hr	TPY		
P-T146	P-T146	Premium unleaded gasoline	2.38	8.94		
P-T1471	P-T1471	Premium unleaded gasoline	1.17	3.21		
P-T257	P-T257	Unifined naphtha	0.04	0.17		
TOTALS			3.58	12.32		

EUG 10 - Internal Floating Roof Tanks, Subject to NSPS Subpart K, Subject to 40 CFR Part 63 Subpart CC (Group 2 Storage Vessels)

EH	Doint Normal Contents		VC	OC
EU	Point	Normal Contents	lb/hr	TPY
P-T1473	P-T1473	Mineral spirits/light reformate/ethanol	3.44	7.54

EUG 11 – External Floating Roof Tanks, Constructed Prior to 6/12/73, Subject to 40 CFR Part 63 Subpart CC (Group 1 Storage Vessels) and Subpart WW

Tett	Doint	Normal Contents	VOC		
EU	Point	Normal Contents	lb/hr	TPY	
P-T142	P-T142	Unleaded gasoline	6.58	28.80	
P-T143	P-T143	Unleaded gasoline	6.60	28.92	
P-T144	P-T144	Premium unleaded gasoline	6.60	28.91	
P-T147	P-T147	FCCU gasoline	1.68	7.34	
P-T150	P-T150	Platformate	2.40	4.92	
P-T152	P-T152	Platformate	2.30	5.03	
P-T154	P-T154	Heavy unicrackate	1.97	8.61	
P-T164	P-T164	Light unicrackate/light reformate	2.84	12.43	
P-T168	P-T168	Alkylate	2.00	8.76	
P-T250	P-T250	Jet fuel	0.03	0.11	
P-T251	P-T251	Mineral spirits	0.43	1.88	
P-T254	P-T254	Unleaded gasoline	1.14	5.00	
P-T255	P-T255	Benfree combo	1.88	8.24	
P-T1470	P-T1470	Unleaded gasoline 6.53		28.60	
TOT	CALS		42.97	177.55	

EUG 12 – External Floating Roof Tanks Constructed After 7/23/84, Subject to 40 CFR Part 63 Subpart CC (Group 1 Storage Vessels) and Subpart WW

EU	Daint	Normal Contents	VC	OC
EU	Point	Normal Contents	lb/hr	TPY
T-155	PT-155	Naphtha	2.24	4.94
T-70	PT-70	Crude oil	1.22	5.31
T-148	PT-148	Gasoline	3.73	12.54
T-140	PT-140	DHT / HC feed	2.41	10.54
T-138	PT-138	DHT / HC feed	2.38	10.42
T-203	PT-203	Gasoline	0.87	3.82
P-T71	P-T71	Crude oil	2.31	6.28
P-T110	P-T110	Light cycle oil	1.21	4.74
P-T204	P-T204	DHT / HC Feed / Diesel 3.03		11.79
TOT	CALS		19.40	70.38

EUG 13 – External Floating Roof Tank, Subject to NSPS Subpart Ka, Subject to 40 CFR Part 63 Subpart CC (Group 1 Storage Vessels), and 40 CFR Part 63, Subpart WW

Teti	Doint	Normal Contents	VOC		
EU	Point	Normal Contents	lb/hr	TPY	
P-T303	P-T303	Crude oil / naphtha	5.12	13.09	

EUG 14 – External Floating Roof Tank, Subject to NSPS Subpart K, Subject to 40 CFR Part 63 Subpart CC (Group 1 Storage Vessels), and 40 CFR Part 63, Subpart WW

TOTT	Doint Normal Contents		VO	OC
EU	Point	Normal Contents	lb/hr	TPY
P-T1449	P-T1449	Crude oil	13.75	30.11

EUG 15 - Asphalt Unit Tanks Subject 40 CFR Part 63 Subpart LLLLL (Group 2 Asphalt Storage Tanks)

EU Point		Normal Contents	VC	OC			
EU	Point	Normal Contents lb/hr					
P-T1331	P-T1331	Polymer Modified Asphalt	0.30	0.44			
P-T1332	P-T1332	Polymer Modified Asphalt	0.30	0.44			
P-T1333	P-T1333	Polymer Modified Asphalt	0.30	0.44			
P-T1337	P-T1337	Blending tank	0.20	0.30			
P-T1338	P-T1338	Blending tank	0.20 0.30				
TOTALS			1.30	1.92			

EUG 16 – Internal Floating Roof Tank, Subject to 40 CFR Part 60, Subpart Kb; Subject to 40 CFR Part 63 Subpart CC (Group 1 Storage Vessels)

Tri i	Point Normal Contents		VC	OC .
EU	Pomi	Normal Contents	lb/hr	TPY
P-T1472	P-T1472	Gasoline / Low-sulfur diesel	1.26	2.75

EUG 17 – External Floating Roof Tank (Sour Water), Subject to 40 CFR Part 60 Subpart Kb, Subject to 40 CFR Part 63 Subpart CC (Group 1 Storage Vessels)

TOTAL	EU Doint Normal Contents		VOC		
EU	Point	Normal Contents	lb/hr	TPY	
P-T2052	P-T2052	Diesel / sour water	1.67	6.65	

EUG 18 – Cone Roof Tanks, Subject to 40 CFR Part 63, Subpart CC (Group 2 Tanks)

EU	Point	Normal Contents	Capacity (bbl.)	VOC TPY
P-T1501	P-T1501	Crude Oil	400	
P-T1502	P-T1502	Crude Oil	400	47.60
P-T1503 P-T1503		Crude Oil	400	47.00
P-T1507	P-T1507	Crude Oil	400	
P-T1504	P-T1504	Crude Oil	400	
P-T1505	P-T1505	Crude Oil	400	31.73
P-T1506	P-T1506	Crude Oil	400	
P-T605A	P-T605A	Crude Oil	400	30.12
P-T605B	P-T605B	Crude Oil	400	30.12
P-T501	P-T501	Jet Fuel	25,700	0.74
46-T502	46-T502	Renewable Distillate	10,000	0.37
46-T503	46-T503	Renewable Distillate	10,000	0.37
46-T504	46-T504	Renewable Distillate	55,000	1.28
46-T505	46-T505	Renewable Distillate	55,000	1.28
TOTALS				113.49

EUG 19 – Internal Floating Roof Tanks, Subject to 40 CFR Part 63, Subpart CC (Group 2 Tanks)

EU	Point	Normal Contents	Capacity (bbl.)	VOC TPY
P-T603	P-T603	Crude Oil	431	5.18
P-T604A	P-T604A	Crude Oil	400	6.06
P-T604B	P-T604B	Crude Oil	400	6.96
TOTALS				12.14

EUG 20 - Product Loading Facility I Vapor Control, Subject to 40 CFR Part 63 Subpart CC

Tri I	Dungang	PM ₁₀ /F	PM _{2.5}	S	O_2	V	OC	N	Ox	C	O
EU	EU Process	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY
P-PLF1	Product Loading Facility	0.11	0.27	0.01	0.02	7.01	12.86	1.46	4.31	1.23	2.96

EUG 21 – Cone Roof Tank, Subject to 40 CFR Part 63 Subpart CC (Group 2 Storage Vessels); or 40 CFR Part 60, Subpart QQQ

TOTAL	Doint	Namual Cantanta	VC	OC
EU	Point	Normal Contents	lb/hr	TPY
P-T2051	P-T2051	Diesel / 100-W Solvent / Wastewater	27.62	12.35

EUG 22 – Internal Floating Roof Tank, Subject to NSPS Subpart Kb; Subject to 40 CFR Part 63 Subpart CC

TOTAL	Doint	Normal Contonta	V(OC
EU	Point	Normal Contents	lb/hr	TPY
P-T1324	P-T1324	Wastewater	2.90	4.47

EUG 23 – External Floating Roof Tanks, Subject to 40 CFR Part 63, Subpart CC (Group 2 Tanks)

EU	Point	Normal Contents	Capacity (bbl.)	VOC TPY
46-T500	46-T500	Renewable Feedstocks	55,000	0.16
46-T501	46-T501	Renewable Feedstocks	55,000	0.16
TOTALS				0.32

EUG 24 – External Floating Roof Tank, Subject to 40 CFR Part 60 Subpart Kb, Subject to 40 CFR Part 63 Subpart CC

EU	Point	Normal Contents	V(OC
EU	romi	Normai Contents	lb/hr TPY	
P-T2003	P-T2003	Wastewater	1.94	3.93

EUG 29 - Fugitive Emissions Subject to Monitoring Requirements (40 CFR Part 63 Subpart CC and/or NSPS Subpart GGGa)

EU	Description	Equipment	Number of Items	Emission Factor, lb/hr/source	Control Eff. *	lb/hr	TPY
		Gas/vapor valves	1000	0.059	97%	1.770	7.553
EII	VOC Leakage at GHDS Unit	lt liq valves	1000	0.024	97%	0.720	3.154
EU- 3726A		flanges	4100	0.00055	30%	1.578	6.914
3/20A	GHD3 UIII	lt liq pumps	15	0.251	85%	0.565	2.474
		sampling	10	0.033	97%	0.001	0.001
TOTAL	LS					4.634	20.295

^{*}Based on TCEQ guidance.

EU	Description	Equipment	Number of Items	Emission Factor, lb/hr/source	Control Eff.	lb/hr	TPY
		gas valves	500	0.0177	98.2%	0.159	0.698
		It liquid valves	1500	0.024	84.3%	5.652	24.756
		hvy liq valves	50	0.0005	0%	0.025	0.110
EU-		flanges	1300	0.00056	76.4%	0.172	0.753
3736A		lt liq pumps	20	0.25	89.4%	0.530	2.321
		hvy liq pumps	5	0.046	35.3%	0.149	0.652
		compr. seal	1	1.400	85.8%	0.199	0.871
		gas relief valves	10	0.36	72.6%	0.986	4.320
TOTAL	S					7.872	34.480

EU	D	Equipment	Number	Emission	Control	VOC	
EU	Description	Equipment	of Items	Factor, lb/hr/source	Eff.	lb/hr	TPY
	WOOT 1	Gas/vapor valves	500	0.0591	98.21%	0.53	2.32
EII		lt liq valves	700	0.024	84.31%	2.64	11.55
EU- 3752A	VOC Leakage at Benfree Unit	flanges	720	0.00055	76.0%	0.10	0.42
3132A	at Bennee Onit	lt liq pumps	11	0.251	89.47%	0.29	1.27
		relief valves	5	0.3527	72.06%	0.49	2.16
TOTAI	LS					4.05	17.72

EU	Description	Equipment	Number of Items	Emission Factor, lb/hr/source	Control Eff.	lb/hr	TPY
		gas valves	330	0.0591	98.2%	0.35	1.54
	Added VOC Leakage at ROSE Unit	It liquid valves	130	0.024	84.31%	0.49	2.14
EU-		hvy liq valves	400	0.0005	0%	0.20	0.88
3728B		flanges	1000	0.00056	76.4%	0.13	0.58
		lt liq pumps	3	0.25	89.47%	0.08	0.35
		hvy liq pumps	10	0.046	35.3%	0.30	1.30
TOTAL	S	·				1.55	6.79

EUG 30 - Fugitive Emissions Subject to Monitoring Requirements (40 CFR Part 63 Subpart CC, and/or NSPS Subpart GGG)

EU	Description	Equipment	Number of Items	Emission Factor, lb/hr/source	Control Eff.	lb/hr	TPY
		It liquid valves	10	0.024	84.3%	0.038	0.165
EU-	VOC Leakage at Bulk Gasoline Terminal	hvy liq valves	350	0.0005	0%	0.175	0.767
3706A		flanges	1100	0.00056	76.4%	0.145	0.637
3700A		lt liq pumps	25	0.25	89.4%	0.662	2.902
		gas relief valves	15	0.36	72.6%	1.480	6.481
TOTAL	S					2.500	10.951

EU	Description	Equipment	Number of Items	Emission Factor, lb/hr/source	Control Eff.	lb/hr	TPY
		gas valves	500	0.0591	98.2%	0.532	2.330
EU-	VOC Leakage at	lt liq valves	2000	0.024	84.3%	7.536	33.008
3722A	FCCU	flanges	4000	0.00055	76.4%	0.519	2.274
		lt liq pumps	35	0.251	89.4%	0.931	4.079
TOTAL	TOTALS					9.518	41.690

EU	Description	Kannment	Number	Emission	Control	VOC	
EU			of Items	Factor, lb/hr/source	Eff.	lb/hr	TPY
	VOC Leakage at Hydrocracker	gas valves	1511	0.0591	97.76%	2.00	8.75
		lt liquid valves	1506	0.024	84.31%	5.68	24.87
		hvy liq valves	232	0.0005	0%	0.12	0.52
EU-		flanges	5923	0.00055	76%	0.78	3.43
3725A		lt liq pumps	40	0.2513	89.47%	1.06	4.63
		hvy liq pumps	7	0.0463	35.71%	0.21	0.91
		gas relief valves	22	0.3527	72.06%	2.17	9.50
		compr. seals	4	1.4021	85.94%	0.39	1.73
TOTAL	S					12.41	54.34

EU	Description	Equipment	Number of Items	Emission Factor, lb/hr/source	Control Eff.	lb/hr	TPY
		gas valves	100	0.0177	98.2%	0.032	0.140
		lt liq valves	1600	0.024	84.3%	6.029	26.406
		hvy liq valves	50	0.0005	0%	0.025	0.110
EU-	VOC Leakage at	flanges	5500	0.00056	76.4%	0.727	3.184
3732A	No. 1 Crude Unit	lt liq pumps	30	0.25	89.4%	0.795	3.482
		hvy liq pumps	15	0.046	35.3%	0.446	1.955
		gas relief valves	15	0.36	100%	0.001	0.001
		compressor	1	1.4	85.9%	0.197	0.865
TOTAL	S					8.251	36.141

EU	Description	Equipment	Number of Items	Emission Factor, lb/hr/source	Control Eff.	lb/hr	TPY
		gas valves	1500	0.0177	98.2%	0.478	2.093
	VOC Leakage at No. 2 Crude Unit and No. 2 Vacuum Unit	It liquid valves	1500	0.024	84.3%	5.652	24.756
		hvy liq valves	100	0.0005	0%	0.050	0.219
EU-		Flanges	4000	0.00056	76.4%	0.529	2.315
3733A		lt liq pumps	25	0.25	89.4%	0.663	2.902
		hvy liq pumps	20	0.046	35.3%	0.595	2.607
		gas relief valves	15	0.36	72.6%	1.480	6.481
		compr. seal	1	1.400	85.8%	0.199	0.871
TOTALS					9.645	42.244	

EU	Description	Equipment	Number of Items	Emission Factor, lb/hr/source	Control Eff.	lb/hr	TPY
	WOOL 1	gas valves	2500	0.0177	98.2%	0.797	3.489
	VOC Leakage at CCR Platformer, No. 1 Splitter, LSR Hydrotreater, Naphtha Unifiner,	It liquid valves	2500	0.024	84.3%	9.420	41.260
		hvy liq valves	100	0.0005	0%	0.050	0.219
EU-		flanges	8750	0.00056	76.4%	1.156	5.065
3734A		lt liq pumps	60	0.25	89.4%	1.590	6.964
	and Hydrogen	hvy liq pumps	10	0.046	35.3%	0.298	1.304
	Plant	gas relief valves	15	0.36	72.6%	1.480	6.481
		compr. seal	1	1.400	85.8%	0.199	0.871
TOTALS						14.989	65.651

EU	Description	Equipment	Number of Items	Emission Factor, lb/hr/source	Control Eff.	lb/hr	TPY
	VOC Leakage at	gas valves	1500	0.0177	98.2%	0.478	2.093
	Alkylation Unit, Propylene Splitter, Butane Defluorinator, LPG Loading and LPG Storage	lt liq valves	1500	0.024	84.3%	5.652	24.756
EU-		hvy liq valves	50	0.0005	0%	0.025	0.110
3735A		flanges	4750	0.00056	76.4%	0.628	2.750
		lt liq pumps	15	0.25	89.4%	0.398	1.741
		gas relief valves	30	0.36	72.6%	2.959	12.961
TOTALS					10.139	44.410	

EU	Description	Equipment	Number of Items	Emission Factor, lb/hr/source	Control Eff.	lb/hr	TPY
		gas valves	120	0.059	98.2%	0.127	0.558
	VOC Leakage at Steam, Utilities, and Flare System	lt liq valves	150	0.024	84.3%	0.565	2.476
FII		hvy liq valves	20	0.0005	0%	0.010	0.044
EU- 3740A		flanges	250	0.00056	76.4%	0.033	0.145
3740A		lt liq pumps	25	0.25	89.4%	0.663	2.902
		hvy liq pumps	6	0.046	0%	0.276	1.209
		gas relief valves	50	0.36	72.6%	4.932	21.602
TOTALS					6.606	28.935	

EU	Description	Equipment	Number of Items	Emission Factor, lb/hr/source	Control Eff.	lb/hr	TPY
		gas valves	200	0.0177	98.2%	0.064	0.279
	LPG Unit	lt liq valves	200	0.024	84.3%	0.754	3.301
EU-3707		hvy liq valves	5	0.0005	0%	0.003	0.011
EU-3/0/		flanges	4600	0.00056	76.4%	0.608	2.663
		lt liq pumps	15	0.25	89.4%	0.398	1.741
		gas relief valves	15	0.36	100%	0.001	0.001
TOTALS						1.825	7.995

EU	Description	Equipment	Number of Items	Emission Factor, lb/hr/source	Control Eff.	lb/hr	TPY
	RFG System	gas valves	1020	0.0177	98.2%	0.325	1.423
		lt liq valves	1000	0.024	84.3%	3.768	16.504
EU-3727		hvy liq valves	20	0.0005	0%	0.010	0.044
EU-3/2/		flanges	1550	0.00056	76.4%	0.205	0.897
		lt liq pumps	12	0.25	89.4%	0.318	1.393
		gas relief valves	5	0.36	100%	0.001	0.001
TOTALS						4.627	20.262

EU	Description	Equipment	Number of Items	Emission Factor, lb/hr/source	Control Eff.	lb/hr	TPY
		lt liq valves	1560	0.024	84.31%	5.87	25.73
	VOC Leakage at Tank Farm	hvy liq valves	5	0.0005	0%	0.002	0.01
		flanges	5215	0.00055	76.0%	0.69	3.02
EU-3710		lt liq pumps	57	0.2513	89.47%	1.51	6.60
		relief valves	10	0.3527	72.06%	0.99	4.32
		open-ended lines	10	0.0051	34.78%	0.03	0.14
TOTALS					9.09	39.82	

EU	Description	Equipment	Number of Items	Emission Factor, lb/hr/source	lb/hr	TPY
EU-	VOC Leakage at	hvy liq valves	600	0.0005	0.300	1.314
3711B	Asphalt	flanges	2600	0.00056	1.456	6.377
TOTAL	S				1.756	7.691

EU	Description	Equipment	Number of Items	Emission Factor, lb/hr/source	lb/hr	TPY
		lt liq valves	250	0.024	6.000	26.280
EU-	VOC Leakage at No. 1 Crude Unit	hvy liq valves	800	0.0005	0.400	1.752
3732B		flanges	1200	0.00056	0.672	2.943
		lt liq pumps	10	0.25	2.500	10.950
		hvy liq pumps	35	0.046	1.610	7.052
TOTALS				11.182	48.977	

EU	Description	Equipment	Number of Items	Emission Factor, lb/hr/source	Control Eff.	lb/hr	TPY
EH	WOOL1	lt liq valves	30	0.024	84.31%	0.113	0.495
EU- 3734B	VOC Leakage at	flanges	70	0.00056	76.0%	0.009	0.041
3/34D	CCR Plat Area	hvy liq pumps	5	0.0463	0%	0.232	1.014
TOTAL	S					0.354	1.550

EU	Description	Equipment	Number of Items	Emission Factor, lb/hr/source	lb/hr	TPY
		open-ended lines	40	0.024	0.960	4.205
EU-	VOC Leakage at	hvy liq pumps	10	0.046	0.460	2.015
3735B	Alkylation Unit	flanges	2000	0.00056	1.120	4.906
		relief valves	35	0.046	1.610	7.052
TOTAL	S				4.150	18.177

EU	Description	Equipment	Number of Items	Emission Factor, lb/hr/source	lb/hr	TPY
DII	VOC Laskage of	hvy liq valves	208	0.000873	0.182	0.795
EU- 3711C	VOC Leakage at Asphalt Unit	hvy liq pumps	26	0.016801	0.437	1.913
3/110	Aspirant Onit	hvy liq flanges	625	0.001307	0.817	3.350
TOTAL	S				1.436	6.058

EU	Description	Equipment	Number of Items	Emission Factor, lb/hr/source	Control Eff.	lb/hr	TPY
		gas valves	9	0.0591	97.00%	0.02	0.07
	VOC Lealvage of	flanges	442	0.00055	30.0%	0.17	0.75
EU-3701	VOC Leakage at Distillate Handling	hvy liq valves	187	0.0005	0%	0.09	0.42
	Distillate Hallulling	gas relief valves	4	0.3527	97.0%	0.04	0.19
		hvy liq pumps	24	0.0463	0%	1.11	4.87
TOTAL	S					1.43	6.28

EUG 35 - Fugitive Emissions Subject to Monitoring Requirements (40 CFR Part 63 Subpart CC and/or NSPS Subpart GGG)

EII	Description	Egyinanant	Number	Emission	Control	VC	OC
EU	Description	Equipment	of Items	Factor, lb/hr/source	Eff.	lb/hr	TPY
	VOC Leakage at	gas valves	177	0.0177	98.2%	0.056	0.247
	Amine Treating	lt liquid valves	100	0.024	84.3%	0.377	1.650
EU-	Unit, Sour Water	hvy liq valves	25	0.0005	0%	0.013	0.055
3740C	Stripper, Sulfur Recovery Unit,	flanges	1570	0.00056	76.4%	0.207	0.909
	and Tail Gas	lt liq pumps	10	0.25	89.4%	0.265	1.161
	Treating Unit	hvy liq pumps	15	0.046	35.3%	0.446	1.955
TOTAL	TOTALS					1.364	5.977

EUG 36 - Steam Boilers Subject to NSPS Part 60 Subpart Dc and NSPS Subpart J and MACT Part 63 Subpart DDDDD

Doint ID	Transacion II-14	PM_{10}		SO_2		NOx		VOC		CO	
Point ID	Emission Unit	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY
40-H1101	Indeck steam boiler	0.05	0.22	3.39	14.85	5.43	23.78	0.60	2.62	9.12	39.95
22-B131	FCCU Boiler	0.05	0.22	3.41	14.94	3.59	15.74	0.54	2.36	8.22	36.00
TOTALS		0.10	0.44	6.80	29.79	9.02	39.52	1.14	4.98	17.34	75.95

EUG 37 – Fuel Gas Combustion Devices Subject to NSPS Part 60 Subpart Ja and MACT Part 63 Subpart DDDDD

Point ID	Emission Unit	PN	PM_{10}		SO_2		NOx		VOC		0
Point ID	Emission Unit	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY
P-GHH2601	GHDS Splitter Reboiler	0.03	0.10	1.60	2.53	1.83	8.02	0.26	1.12	3.91	17.14
P-GHH2602	GHDS Reactor Heater	0.01	0.04	0.56	0.89	1.01	4.42	0.09	0.40	1.38	6.06
P-GHH2603	GHDS Stabilizer Reboiler	0.01	0.04	0.56	0.89	1.01	4.42	0.09	0.40	1.38	6.06
REFORMER	Hydrogen Plant Reformer	0.76	3.01	0.13	0.53	7.44	29.63	0.32	1.26	3.78	15.03
	TOTALS	0.81	3.19	2.85	4.84	11.29	46.49	0.76	3.18	10.45	44.29

EUG 38 - Fuel Gas Combustion Devices, Subject to NSPS Subpart J and MACT Part 63 Subpart DDDDD

	ar t DDDDD										
Point ID	Emission Unit	PN	I 10	SO	O_2	NO	Ox	VC	OC	C	0
Point ID	Emission Unit	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY
P-VH101	No. 2 Vacuum charge heater	0.04	0.19	2.88	12.58	5.04	22.08	0.46	1.98	6.93	30.30
P-DHH801	Hydrotreater charge heater	0.02	0.10	1.86	6.79	2.87	10.47	0.30	1.07	4.48	16.34
P-DHH802	Fractionator charge heater	0.03	0.15	2.79	10.18	3.43	12.50	0.44	1.60	6.72	24.50
P-H356	CCR No. 2 Interheater	0.03	0.13	1.92	8.39	3.36	14.72	0.31	1.32	4.62	20.20
P-JH301	Fractionator charge heater	0.02	0.09	1.34	5.87	2.40	10.51	0.21	0.94	3.29	14.43
P-CH151	No. 2 Crude Unit Charge	0.04	0.17	2.67	11.68	3.12	13.67	0.42	1.84	3.12	13.67
P-H48001	SRU Hot Oil Heater	0.04	0.16	2.50	10.93	7.80	34.19	0.43	1.88	6.55	28.72
P-HT134	Tank 134 heater	0.01	0.02	0.28	1.23	0.84	3.68	0.05	0.20	0.71	3.09
P-HT136	Tank 136 heater	0.01	0.02	0.28	1.23	0.84	3.68	0.05	0.20	0.71	3.09
P-HT264	Tank 264 heater	0.01	0.01	0.03	0.15	0.10	0.45	0.05	0.20	0.71	3.09
P-CH1	Crude fractionation heater	0.07	0.29	3.50	15.33	21.26	93.12	0.71	3.11	10.75	47.09
P-CH2	Crude charge heater	0.04	0.17	2.14	9.38	9.44	41.34	0.43	1.89	6.56	28.74

Doint ID	Emission Haid	PN	110	SO ₂		NOx		VOC		СО	
Point ID	Emission Unit	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY
P-CH3	Crude preflash reboiler	0.02	0.10	1.28	5.61	4.61	20.18	0.26	1.14	3.92	17.17
CH121	Vacuum Charge heater (crude	0.02	0.10	1.50	6.59	4.31	18.89	0.24	1.04	3.62	15.87
P-JH1 & JH2	Hydrocracker reactor heater	0.04	0.16	1.90	8.33	6.81	29.81	0.39	1.71	5.84	25.58
P-JH101	Hydrocracker Fractionator	0.04	0.16	2.39	10.48	6.86	30.06	0.38	1.65	5.76	25.25
P-PH3	Unifiner stripper reboiler	0.02	0.09	1.13	4.95	4.04	17.69	0.23	1.01	3.47	15.2
P-HH1	Hysomer heater	0.02	0.07	0.89	3.90	3.19	13.96	0.18	0.79	2.73	11.96
P-H152	No. 2 splitter reboiler	0.02	0.07	0.83	3.64	2.94	12.88	0.17	0.75	2.52	11.04
P-5H1	Alkylation Depropanization	0.04	0.19	2.94	12.88	9.98	43.69	0.47	2.06	7.08	31.02
P-H1302	Tank 101 heater	0.01	0.02	0.28	1.23	0.98	4.29	0.06	0.27	0.84	3.68
P-H1303	Tank 101 heater	0.01	0.04	0.46	2.02	1.65	7.21	0.10	0.44	1.42	6.22
P-HT120	Tank 120 heater	0.01	0.01	0.03	0.14	0.10	0.43	0.01	0.05	0.09	0.4
P-HT265	Tank 265 heater	0.01	0.01	0.03	0.14	0.10	0.43	0.01	0.05	0.09	0.4
P-HT601	Tank 601 heater	0.01	0.01	0.02	0.09	0.07	0.31	0.01	0.05	0.06	0.27
P-HT1321	Tank 1321 heater	0.01	0.01	0.02	0.09	0.07	0.31	0.01	0.05	0.06	0.27
P-HT1323	Tank 1323 heater	0.01	0.01	0.02	0.09	0.07	0.31	0.01	0.05	0.06	0.27
P-HT1324	Tank 1324 heater	0.01	0.01	0.14	0.62	0.50	2.15	0.03	0.14	0.42	1.84
P-H350	CCR charge heaters	0.09	0.32	5.88	17.11	16.87	61.33	0.93	3.37	14.17	51.51
P-PH2	Unifiner charge heater	0.02	0.06	1.49	3.33	4.26	13.68	0.23	0.75	3.58	11.49
P-H601	ROSE heater	0.02	0.08	1.67	4.30	2.38	8.82	0.26	0.97	4.00	14.82
P-H1301	Tank 107 heater	0.01	0.01	0.07	0.33	0.28	1.24	0.02	0.07	0.24	1.04
P-1H4	FCCU Feed Preheater	0.06	0.27	4.14	18.12	16.09	70.49	0.65	2.86	9.96	43.65
40-B130	Nebraska Package Boiler	0.05	0.22	2.58	11.31	10.60	46.43	0.58	2.55	8.90	39.00
TOTALS		0.91	3.52	48.49	209.04	152.86	664.87	8.84	38.05	133.31	575.69

EUG 39 - Fuel Gas Combustion Device, Subject to 40 CFR Part 63 Subpart LLLLL

Point ID	Emission Unit	PM_{10}		SO_2		NOx		VOC		CO	
Point ID		lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY
P-F1301	Asphalt oxidizer incinerator*	0.13	0.56	15.37	67.61	1.65	7.21	0.09	0.40	1.41	6.18

^{*} includes VOC from Asphalt Unit.

EUG 43 – Asphalt Unit Heater, Subject to MACT Part 63 Subpart DDDDD

Doint ID	Emission Unit	PM ₁₀		SO_2		NOx		VOC		CO	
Point ID	Emission Unit	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY
P-H1331	Asphalt Unit hot oil heater	0.01	0.02	0.01	0.02	0.84	3.68	0.05	0.20	0.71	3.09

EUG 45 – Flares, Subject to 40 CFR Part 60, Subpart Ja and 40 CFR Part 63, Subpart CC

Point ID	Emission Unit	PN	M ₁₀	SO_2		NOx		VOC		CO	
ronn id	Emission Cint	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY
P-FS1403	West Flare	0.86	3.80	60.52	256.0	42.52	186.3	1.80	7.92	9.68	42.38
P-FS1503	Hydrocracker Flare	0.01	0.01	0.01	0.01	0.02	0.09	0.03	0.13	0.07	0.32
	TOTALS		3.81	60.53	256.01	42.54	186.39	1.83	8.05	9.75	42.70

EUG 46 - Fuel Gas Combustion Devices, Subject to NSPS Subpart Ja and 40 CFR Part 63 Subpart DDDDD

Point ID	ID Emission Unit		M_{10}	SO	O_2	N(Ox	VC	OC .	C	0
Point ID	Emission Unit	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY
52-H01	Benfree Unit reboiler	0.04	0.19	2.91	4.72	3.40	14.89	0.46	2.01	7.00	30.66

 $EUG\ 47$ - Steam Boilers Subject to NSPS Part 60 Subpart Dc and NSPS Subpart Ja and MACT Part 63 Subpart DDDDD

Point ID	Emission Unit	PN	M_{10}	SO	O_2	N	Ox	V	OC	C	O
Point ID	Emission Unit	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY
40-B130	Wabash package boiler	0.05	0.22	3.32	5.38	3.98	17.42	0.60	2.65	9.22	40.37

EUG 48 – Stationary Reciprocating Internal Combustion Engines Subject to NSPS Subpart IIII and NESHAP Subpart ZZZZ

D : 4 ID	T	PN	I ₁₀	S	O_2	N(Ox	VO	OC	C	O
Point ID	t ID Emission Unit		TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY
CE-2	Diesel wastewater pump	0.01	0.01	0.01	0.01	0.05	0.01	0.02	0.01	0.62	0.15
CE-3	Diesel wastewater pump	0.03	0.01	0.01	0.01	0.51	0.13	0.20	0.05	0.45	0.11
CE-4	Diesel wastewater pump	0.03	0.01	0.01	0.01	0.51	0.13	0.20	0.05	0.45	0.11
CE-5	Backup air compressor	0.01	0.06	0.01	0.02	0.29	1.29	0.14	0.61	4.57	11.24
CE-6	Diesel water pump	0.01	0.01	0.01	0.01	0.57	0.14	0.19	0.05	0.61	0.15
CE-8	Backup air compressor	0.01	0.01	0.01	0.01	0.29	0.07	0.14	0.04	2.57	0.64
CE-9	Diesel water pump	0.01	0.01	0.01	0.01	0.28	0.07	0.09	0.02	0.30	0.07
CE-10	Backup air compressor	0.02	0.01	0.01	0.01	0.38	0.10	0.12	0.03	0.40	0.10
CE-11	Diesel water pump	0.03	0.01	0.01	0.01	0.51	0.13	0.17	0.04	0.54	0.14
CE-12	Air compressor generator	0.02	0.08	0.01	0.02	0.58	2.53	0.16	0.72	3.02	13.23
CE-13	Diesel water pump	0.03	0.01	0.01	0.01	0.51	0.13	0.17	0.04	0.54	0.14
CE-14	Diesel water pump	0.01	0.01	0.01	0.01	0.52	0.13	0.17	0.04	0.55	0.14
CE-15	Backup air compressor	0.02	0.01	0.01	0.01	0.38	0.10	0.12	0.03	0.40	0.10
40-C1168		0.02	0.09	0.01	0.04	0.39	1.68	0.19	0.80	3.34	14.62
	TOTALS	0.26	0.34	0.14	0.19	5.77	6.64	2.08	2.53	18.36	40.94

EUG 51 – Miscellaneous Process Vent

Doint		VO	OC
Point	Process	lb/hr	TPY
P-VENT7	Asphalt light ends recovery sump	0.91	3.99

EUG 53 – Process Vents Subject to Permit Limitations and 40 CFR Part 63 Subpart UUU

Doint	Dwagoog	VO	C
Point	Process	lb/hr	TPY
P-VENT6	CCR regenerator vent	2.20	9.63
P-VENT8	CCR depressurization and purge vents		
TOTALS		2.20	9.63

EUG 54 – Molten Sulfur Pit

EII	EU Point Normal Contents		H ₂	2S
EU	Point	Normal Contents	lb/hr	TPY
P-SP301	P-SP301	Sulfur	0.014	0.06

EUG 56 – Grandfathered Wastewater System Subject to 40 CFR Part 63 Subpart CC

Doint	Dwagoss	VC	OC
Point	Process	lb/hr	TPY
P-WW1	Process wastewater systems and open sewers	10.20	44.67

EUG 57 – Wastewater Systems Subject to NSPS Subpart QQQ and 40 CFR Part 63 Subpart CC

Point	Dwoodg	VOC		
	Process	lb/hr	TPY	
	CCR drain	0.035	0.153	
EU-WW2	D-208 drain	0.035	0.153	
EU-WWZ	S-1450 drain	0.035	0.153	
	S-1451 drain	0.035	0.153	
TOTALS		0.140	0.612	

EUG 58 – Open API Separator Subject to NSPS Part 60 Subpart QQQ

Point	Dwooogg	VC	OC
Point	Process	lb/hr	TPY
P-API1	Open API Separator	110.82	485.40

EUG 59 - Covered API Separator Subject to NSPS Part 60 Subpart QQQ

Point	Риодоля	VC	OC
Point	Process	lb/hr	TPY
P-API2	Covered API Separator	0.60	2.63

EUG 60 – Wastewater Systems Subject to NSPS Subpart QQQ and 40 CFR Part 63 Subpart CC in SRU, Diesel Hydrotreater Area, Vacuum Unit 2 Area, GHDS Unit, Benfree Unit, and Hydrogen Plant

EU	Doint	Equipment	VC	OC
EU	Point	Equipment	lb/hr	TPY
EU-WW3	EU-WW3	SRU closed process drains	0.88	3.83
EU-WW3	EU-WW3	SRU closed junction boxes	0.14	0.61
EU-WW4	EU-WW4	DHDU P-trap drains	0.88	3.83
EU-WW4	EU-WW4	DHDU junction boxes	0.14	0.61
EU-WW5	EU-WW5	P-trap drains	0.88	3.83
EU-WW3		Junction boxes	0.14	0.61
EU-WW6	EU-WW6	10 P-trap drains	0.35	1.53
EU-WWO	EU-WWO	2 Junction doxes	0.14	0.61
EU-52WW	EU-52WW	Benfree Unit drains	0.88	3.83
EU-47WW	EU-47WW	Hydrogen Plant Unit drains	0.29	1.29
TOTALS			3.84	20.58

EUG 61 – Benfree Unit Oil-Water Separator Subject to NSPS Part 60 Subpart QQQ and 40 CFR Part 63 Subpart CC

Doint	Point Process	VC)C
Point	Process	lb/hr	TPY
52-05	Benfree Units Separator	0.85	3.73

EUG 64 – GHDS Oil-Water Separator Tank Subject to NSPS QQQ and 40 CFR Part 63, Subpart CC

Doint	Dwo oogs	VC	OC
Point	Process	lb/hr	TPY
GHT-2603	GHDS Oil-Water Separator Tank	2.99	1.11

EUG 66 - Cooling Towers Subject to 40 CFR Part 63 Subpart CC

Point	Process	VOC TPY	PM ₁₀ TPY
P-CWT1	Crude Unit cooling tower	23.65	13.61
P-CWT3	FCCU cooling tower	17.34	7.49
P-CWT5	Alky Unit cooling tower	7.10	3.71
TOTALS		48.09	24.81

The vacuum unit cooling tower (P-CWT2) was eliminated.

EUG 68 - Cooling Towers Subject to 40 CFR Part 63 Subpart CC

Point	Equipment	V(VOC		I_{10}	P	$M_{2.5}$
	Equipment	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY
P-CWT6	GHDS cooling tower	0.25	1.10	0.16	0.70	0.01	0.01
52-CT	Benfree Unit cooling tower	0.05	0.22	0.04	0.17	0.01	0.01
P-CWT4	Hydrocracker cooling tower	0.34	1.47	0.25	1.11	0.01	0.01
TOTALS		0.64	2.79	0.45	1.98	0.03	0.03

EUG 80 - Non-Gasoline Loading Racks

Point	Process	VC	OC .
Foint	Frucess	lb/hr	TPY
P-LR2T	Gas oil truck unloading rack	3.48	0.87
P-LT2R	Gas oil rail unloading rack	3.48	0.87
P-LR3T	Solvent truck loading rack	65.76	1.15
P-LT3R	Solvent rail loading rack	64.68	3.81
P-LR5T	Asphalt truck loading rack	9.84	9.20
P-LR5R	Asphalt/slurry rail loading rack	17.84	0.08
P-LR6T	Slurry truck loading rack	0.01	0.01
TOTALS		165.11	16.01

EUG 81 – Non-Gasoline Loading Racks

Doint	Dwo oogs	VC	OC
Point	Process	lb/hr	TPY
P-LR4T	JP-8 truck loading rack	0.47	0.24
P-LR7R	Distillate railcar loading rack	10.55	1.41
TOTALS		11.02	1.65

EUG 82 – Molten Sulfur Loading Racks

EU Point	Doint	Equipment	Н	2 S
EU	romi	Equipment	lb/hr	TPY
P-SLRR	P-SLRR	Sulfur railcar loading rack	0.014	0.06
P-SLRT	P-SLRT	Sulfur truck loading rack	0.014	0.06
TOTALS			0.028	0.12

The sulfur loading racks are not vented to a control device.

EUG 85 - FCCU Regenerator Subject to NSPS Subpart J

Point ID	Emigrica IIvi4	PN	I_{10}	S	O_2	N	Ox	V(OC .	C	0
	Emission Unit	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY
P-1ME258	FCCU regenerator	15.4	67.5	437.4	1916.0	62.1	272.2	3.67	16.06	95.28	75.12

EUG 86 – Catalyst Hopper Vents

Doint ID	T1	Process	Emission	Control	PM ₁₀ /	' PM _{2.5}
Point ID	Unit	Rates	Factor	Efficiency	lb/hr	TPY
P-FCCUHOP	FCCU Catalyst Hopper	48 TPH 182.5 TPY	0.73 lb/ton	None claimed	35.04	0.07
P-HCATLOAD	Fresh Hydrocracker Catalyst Loading	14.17 TPH 340 TPY	0.73 lb/ton	None claimed	10.34	0.12
P- HCATUNLOA D	Fresh Hydrocracker Catalyst Unloading	14.17 TPH 340 TPY	0.73 lb/ton	None claimed	10.34	0.12
	TOTALS				55.72	0.31

EUG~87 - SRU~Tail~Gas~Incinerator~Subject~to~NSPS~Subpart~J~and~40~CFR~Part~63~Subpart~UUU

Point ID	Emission Unit	PM_{10}		SO_2		NOx		VOC		CO	
	Emission Unit	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY
P-TGIS1	Sulfur Recovery Unit	0.22	1.00	18.90	82.77	3.01	13.20	0.17	0.73	11.90	52.12

EUG 90 – Miscellaneous Insignificant Heaters

Point ID	Emission Unit	PI	PM_{10}		SO_2		NOx		VOC		0
		lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY
IH-1	Kyle House	0.01	0.01	0.01	0.01	0.01	0.04	0.01	0.01	0.01	0.04
IH-2	Main Office	0.01	0.01	0.01S	0.04	0.04	0.16	0.01	0.01	0.03	0.14
IH-3	Webb House	0.01	0.01	0.01	0.01	0.01	0.04	0.01	0.01	0.01	0.04
IH-4	Laboratory	0.01	0.01	0.01	0.02	0.02	0.08	0.01	0.01	0.02	0.07
IH-5	Laboratory	0.01	0.01	0.01	0.01	0.01	0.04	0.01	0.01	0.01	0.04
IH-6	Laboratory	0.01	0.01	0.01	0.02	0.02	0.07	0.01	0.01	0.01	0.06

Point ID	Emission Unit	PI	M_{10}	S	SO_2		Ox	VOC		C	0
Point ID	Emission Cint	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY
IH-7	Laboratory	0.01	0.01	0.01	0.02	0.02	0.07	0.01	0.01	0.01	0.06
IH-8	Laboratory	0.01	0.01	0.01	0.02	0.02	0.07	0.01	0.01	0.01	0.06
IH-9	Laboratory	0.01	0.01	0.01	0.02	0.02	0.07	0.01	0.01	0.01	0.06
IH-10	Electrical Shop	0.01	0.01	0.01	0.02	0.02	0.08	0.01	0.01	0.02	0.07
IH-11	Maintenance Office	0.01	0.01	0.01	0.01	0.01	0.06	0.01	0.01	0.01	0.06
IH-12	Maintenance Office	0.01	0.01	0.01	0.02	0.02	0.07	0.01	0.01	0.01	0.05
IH-13	East Shop	0.02	0.07	0.05	0.23	0.23	0.99	0.01	0.05	0.19	0.83
IH-14	West Shop	0.02	0.07	0.06	0.28	0.23	0.99	0.01	0.05	0.19	0.83
	TOTALS	0.16	0.26	0.23	0.73	0.68	2.83	0.14	0.22	0.54	2.41

EUG 91 - Miscellaneous Engines

Point ID	Emission Unit	PI	PM_{10}		SO_2		NOx		VOC		0
roint 1D		lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY
IE-1	Wastewater Plant	0.66	0.16	0.62	0.15	9.30	2.32	0.74	0.19	2.00	0.50
IE-2	Portable Generator	0.01	0.01	0.01	0.01	0.06	0.02	0.08	0.02	2.20	0.55
IE-3	Portable Generator	0.01	0.01	0.01	0.01	0.09	0.02	0.12	0.03	3.51	0.88
P-1183	Cummins NT 855-F4	0.75	0.04	0.70	0.03	10.54	0.53	0.85	0.04	2.27	0.11
P-1184	Caterpillar 3406B	0.83	0.04	0.77	0.04	11.63	0.58	0.94	0.05	2.51	0.13
P-1185	Cummins QSM11	0.88	0.04	0.82	0.04	12.40	0.62	1.00	0.05	2.67	0.13
,	TOTALS		0.30	2.93	0.28	44.02	4.09	3.73	0.38	15.16	2.30

EUG 92 - Miscellaneous Insignificant Tanks

	T 4°		$\overline{\mathbf{M}_{10}}$		$\overline{\mathbf{O}_2}$	N	Ox	V(OC	C	0
Point ID	Location	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY
IT-1	Shop							0.01	0.01		
IT-2	Shop							0.01	0.01		
IT-3	FCCU	1	I		-			0.01	0.01		
IT-4	Platformer	1	1		1			0.01	0.01		
IT-5	FCCU							0.01	0.01		
T-1417	Truck rack							0.01	0.01		
IT-7	#2 Crude Unit							0.01	0.01		
IT-8	#2 Crude Unit							0.01	0.01		
IT-9	FCCU							0.01	0.01		
IT-10	FCCU							0.01	0.01		
IT-11	#1 Crude Unit							0.01	0.01		
IT-13	72 Manifold							0.01	0.01		
T-1414	Truck rack							0.01	0.01		
T-1416	Truck rack							0.01	0.01		
IT-17	Crude Vacuum Unit							0.01	0.01		
IT-18	Hydrocracker							0.01	0.01		
IT-19	ROSE Unit							0.01	0.01		
IT-20	Boilerhouse							0.01	0.01		
IT-21	FCCU							0.01	0.01		
IT-22	Lt. Oils Blender							0.01	0.01		
IT-23	FCCU							0.01	0.01		
IT-24	#1 Crude Unit	1	1		1			0.01	0.01		
IT-25	#1 Crude Unit	1	-		-			0.01	0.01		
IT-26	#2 Crude Unit	1	-		-			0.01	0.01		
IT-27	#2 Crude Unit							0.01	0.01		

Doint ID	Lagation	P	$\overline{\mathbf{M}_{10}}$	S	$\overline{\mathrm{O}_2}$	N	Ox	V(OC	CO	
Point ID	Location	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY
IT-28	72 Manifold							0.01	0.01		
IT-29	#1 Crude Unit							0.01	0.01		
IT-30	#2 Crude Unit		-		-			0.01	0.01		
IT-31	#2 Crude Unit		1		1			0.01	0.01		
IT-32	Platformer				-			0.01	0.01		
IT-33	Alky Unit		-		-			0.01	0.01		
IT-34	FCCU		1		1			0.01	0.01		
IT-35	72 Manifold		1		1			0.01	0.01		
IT-36	FCCU		1		1			0.01	0.01		
IT-37	Products Handling		1		1			0.01	0.01		
T-1413	Truck rack		1		1			0.01	0.01		
IT-40	FCCU		1		1			0.01	0.01		
IT-41	#1 Crude Unit		1		1			0.01	0.01		
IT-42	#2 Crude Unit		1		1			0.01	0.01		
IT-43	FCCU		1		1			0.01	0.01		
IT-44	Alky Unit		1		1			0.01	0.01		
IT-45	#1 Crude Unit		1		1			0.01	0.01		
T-1418	Truck rack		1		1			0.01	0.01		
T-6092	72 Manifold		1		1			0.01	0.01		
T-1426	Truck rack		1		1			0.01	0.01		
P-T141	Diesel blending				-			0.01	0.01		
P-T2001	Asphalt blending							0.81	1.76		
P-T2002	Asphalt blending							0.18	0.40		
T-1901	Firefighter training							0.01	0.01		
,	TOTALS							1.48	2.65		

SUMMARY OF POTENTIAL AIR EMISSIONS

Point	Emission	PN	I ₁₀	S	O ₂	NO	Ox	VC	C	C	O
No.	Unit	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY
P-T108	Jet kerosene							0.07	0.67		
P-T111	Jet kerosene							0.03	0.05		
P-T162	JP-8 additive							0.01	0.01		
P-T252	Slurry oil							0.01	0.01		
P-T253	High-sulfur diesel							0.1	0.24		
P-T256	Jet kerosene							0.02	0.05		
P-T260	Slurry oil							0.03	0.11		
P-T262	Gas oil							0.11	0.14		
P-T263	Slop oil							0.01	0.05		
P-T1441	Jet kerosene							0.43	0.43		
P-T1472	Gasoline / Diesel							0.63	2.75		
P-T101	Asphalt							0.25	1.11		
P-T107	Asphalt							0.16	0.69		
P-T120	Asphalt							0.01	0.04		
P-T134	Asphalt, Diesel, Water							0.05	0.24		
P-T136	Asphalt, Diesel, Water							0.50	2.20		
P-T265	Asphalt							0.32	1.39		
P-T269	Biodiesel							0.08	0.36		
P-T126	FCCU charge							39.83	87.22		
P-T202	FCCU charge							41.74	91.41		
P-T1323	Asphalt							11.26	24.66		
P-T1324	Wastewater							2.90	3.91		
P-T264	Gas oil							8.34	18.28		
P-T601	Asphalt resin							8.07	17.68		
P-T1321	Asphalt							11.02	24.14		
P-T1474	Diesel additive							0.73	1.61		
P-T1475	High-sulfur diesel							0.17	0.74		
P-T200	Diesel							0.39	1.7		
P-T2051	Diesel / 100-W / Water							27.62	12.35		
P-T67	Crude oil							3.83	8.38		
P-T68	Crude oil							3.83	8.38		
P-T69	Crude oil							3.83	8.38		
P-T146	Premium unleaded							2.38	8.94		
P-T501	Jet fuel							9.22	0.74		
P-T1471	Premium unleaded							1.17	3.21		
P-T257	Unifined naphtha							0.04	0.17		
P-T1473	Mineral spirits/light							3.44	7.54		
P-T142	Unleaded gasoline							6.58	28.8		
P-T143	Unleaded gasoline							6.6	28.92		
P-T144	Premium unleaded							6.6	28.91		
P-T147	FCCU gasoline							1.68	7.34		
P-T150	Platformate							2.4	4.92		
P-T152	Platformate							2.3	5.03		
P-T154	Heavy unicrackate							1.97	8.61		
P-T164	Light unicrackate/light							2.84	12.43		
P-T168	Alkylate							2.01	8.76		
P-T250	Jet fuel							0.03	0.11		
1 1230	1001	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>		0.03	0.11		

Point	Emission	PM	110	SO	O_2	N(Ox	VC	OC	C	0
No.	Unit	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY
P-T251	Mineral spirits							0.43	1.88		
P-T254	Unleaded gasoline							1.14	5		
P-T255	BenFree combo							1.88	8.24		
P-T1470	Unleaded gasoline							6.53	28.6		
PT-155	Naphtha							2.24	4.94		
PT-70	Crude Oil							1.22	5.31		
PT-148	Gasoline							3.73	12.54		
PT-140	DHT / HC Feed							2.41	10.54		
PT-138	DHT / HC Feed							2.38	10.42		
PT-203	Gasoline							0.87	3.82		
P-T71	Crude Oil							2.31	6.28		
P-T110	Light Cycle Oil							1.21	4.74		
P-T204	DHT / HC Feed / Diesel							3.03	11.79		
P-T303	Crude oil							5.12	13.09		
P-T1449	Crude oil							13.75	30.11		
P-T1331	Asphalt							0.3	0.44		
P-T1332	Asphalt							0.3	0.44		
P-T1333	Asphalt							0.3	0.44		
P-T1337	Blending Tank							0.2	0.3		
P-T1338	Blending Tank							0.2	0.3		
P-T2052	Diesel / Sour Water							1.67	6.65		
P-T2003	Wastewater							1.94	3.93		
P-PLF1	Product Loading Facility	0.11	0.27	0.01	0.02	1.46	4.31	5.14	12.86	1.23	2.96
EU-3726A	VOC Leakage at GHDS							4.634	20.295		
EU-3736A	VOC Leakage at OHT							7.872	34.48		
EU-3752A	VOC Leakage at DITI							4.05	17.72		
EU-3706A	VOC Leakage at Bulk							2.5	10.951		
EU-3722A	VOC Leakage at FCCU							9.518	41.69		
EU-3725A	VOC Leakage at 1 CCC							12.41	54.34		
EU-3732A	VOC Leakage at No. 1							8.251	36.141		
EU-3733A	VOC Leakage at No. 2							9.645	42.244		
EU-3734A	VOC Leakage at No. 2 VOC Leakage at CCR							14.989	-		
EU-3735A	VOC Leakage at CCR							10.139	44.41		
EU-3740A	VOC Leakage at Steam,							6.606	28.935		
EU-3740A EU-3707	VOC Leakage at Steam,							1.825	7.995		
EU-3727	VOC Leakage at RFG							4.627	20.262		
EU-3710	VOC Leakage at KFG VOC Leakage at Tank							9.09			
	ŭ								39.82		
EU-3711B	VOC Leakage at							1.756	7.691		
EU-3728	VOC Leakage at ROSE							1.55	6.79		
EU-3732B	VOC Leakage at No. 1							11.182	48.977		
EU-3734B	VOC Leakage at CCR							0.354	1.55		
EU-3735B	VOC Leakage at							4.15	18.177		
EU-3711C	VOC Leakage at							1.436	6.058		
EU-3740C	VOC Leakage at Amine				14.05			1.364	5.977		
40-H1101	Indeck steam boiler	0.05	0.22	3.39	14.85	5.43	23.78	0.6	2.62	9.12	39.95
22-B131	FCCU Boiler	0.05	0.22	3.41	14.94	3.59	15.74	0.54	2.36		36
P-GHH2601	GHDS Splitter Reboiler	0.03	0.1	1.6	2.53	1.83	8.02	0.26	1.12	3.91	17.14
P-GHH2602	GHDS Reactor Heater	0.01	0.04	0.56		1.01	4.42	0.09	0.4	1.38	6.06
P-GHH2603	GHDS Stabilizer	0.01	0.04	0.56		1.01	4.42	0.09	0.4	1.38	6.06
REFORMER	Hydrogen Plant	0.76	3.01	0.13	0.53	7.44	29.63	0.32	1.26	3.78	15.03

Point	Emission	PM	[10	SO	O_2	NO	Ox	VC	OC	C	0
No.	Unit	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY
P-VH101	No. 2 Vacuum charge	0.04	0.04	2.88	12.58	5.04	22.08	0.46	1.98	6.93	30.3
P-DHH801	Hydrotreater charge	0.02	0.1	1.86	6.79	2.87	10.47	0.3	1.07	4.48	16.34
P-DHH802	Fractionator charge	0.03	0.15	2.79	10.18	3.43	12.5	0.44	1.6	6.72	24.5
P-H356	CCR No. 2 Interheater	0.03	0.13	1.92	8.39	3.36	14.72	0.31	1.32	4.62	20.2
P-JH301	Fractionator charge	0.02	0.09	1.34	5.87	2.4	10.51	0.21	0.94	3.29	14.43
P-CH151	No. 2 Crude Unit	0.04	0.17	2.67	11.68	3.12	13.67	0.42	1.84	3.12	13.67
P-H48001	SRU Hot Oil Heater	0.04	0.16	2.5	10.93	7.8	34.19	0.43	1.88	6.55	28.72
P-HT134	Tank 134 heater	0.01	0.02	0.28	1.23	0.84	3.68	0.05	0.2	0.71	3.09
P-HT136	Tank 136 heater	0.01	0.02	0.28	1.23	0.84	3.68	0.05	0.2	0.71	3.09
P-HT264	Tank 264 heater	0.01	0.01	0.03	0.15	0.1	0.45	0.05	0.2	0.71	3.09
P-CH1	Crude fractionation	0.07	0.29	3.5	15.33	21.25	93.07	0.71	3.11	10.75	47.09
P-CH2	Crude charge heater	0.04	0.17	2.14	9.38	12.95	56.71	0.43	1.89	6.56	28.74
P-CH3	Crude preflash reboiler	0.02	0.1	1.28	5.61	4.61	20.17	0.26	1.14	3.92	17.17
P-CH121	Vacuum Charge heater	0.02	0.1	1.5	6.59	4.31	18.89	0.24	1.04	3.62	15.87
P-JH1 & JH2	Hydrocracker reactor	0.04	0.16	1.9	8.33	6.81	29.81	0.39	1.71	5.84	25.58
P-JH101	Hydrocracker	0.04	0.16	2.39	10.48	6.86	30.05	0.38	1.65	5.76	25.25
P-PH3	Unifiner stripper reboiler	0.02	0.09	1.13	4.95	4.04	17.68	0.23	1.01	3.47	15.2
P-HH1	Hysomer heater	0.02	0.07	0.89	3.9	3.19	13.95	0.18	0.79	2.73	11.96
P-H152	No. 2 splitter reboiler	0.02	0.07	0.83	3.64	2.94	12.88	0.17	0.75	2.52	11.04
P-5H1	Alkylation	0.04	0.19	2.94	12.88	9.98	43.69	0.47	2.06	7.08	31.02
P-H1302	Tank 101 heater	0.01	0.02	0.28	1.23	0.98	4.29	0.06	0.27	0.84	3.68
P-H1303	Tank 101 heater	0.01	0.04	0.46	2.02	1.65	7.21	0.1	0.44	1.42	6.22
P-HT120	Tank 120 heater	0.01	0.01	0.03	0.14	0.10	0.43	0.01	0.05	0.09	0.4
P-HT265	Tank 265 heater	0.01	0.01	0.03	0.14	0.10	0.43	0.01	0.05	0.09	0.4
P-HT601	Tank 601 heater	0.01	0.01	0.02	0.09	0.10	0.30	0.01	0.05	0.06	0.27
P-HT1321	Tank 1321 heater	0.01	0.01	0.02	0.09	0.07	0.30	0.01	0.05	0.06	0.27
P-HT1323	Tank 1323 heater	0.01	0.01	0.02	0.09	0.07	0.30	0.01	0.05	0.06	0.27
P-HT1324	Tank 1324 heater	0.01	0.01	0.02	0.62	0.49	2.15	0.03	0.03	0.42	1.84
P-H350	Tank 1324 neater	0.01	0.01	0.14	0.02	0.77	2.13	0.03	0.14	0.42	1.04
P-H351	CCR charge heaters	0.09	0.32	3.91	17.11	14.01	61.33	0.78	3.37	11.77	51.51
P-H352	CCR charge heaters	0.09	0.32	3.71	1/.11	14.01	01.55	0.78	3.37	11.//	31.31
P-PH5	Unifiner charge heater	0.02	0.06	0.76	3.33	3.12	13.68	0.17	0.75	2.62	11.49
P-H601	ROSE heater	0.02	0.08	0.76		2.01		0.17	0.73	3.38	
P-H1301	Tank 107 heater	0.02	0.08	0.98	0.33	0.28	8.82 1.24	0.22	0.97	0.24	14.82
P-H1301 P-1H4		-									1.04
	FCCU Feed Preheater	0.06	0.27	4.14	18.12	16.11	70.54	0.65	2.86	9.96	
40-B130	Nebraska Package	0.05	0.22	2.58	11.31	10.6	46.43	0.58	2.55	8.90	39
P-F1301	Asphalt oxidizer	0.06	0.28	0.01	0.02	0.84	3.68	0.05	0.2	0.71	3.09
P-H1331	Asphalt Unit hot oil	0.01	0.02	0.01	0.02	0.84	3.68	0.05	0.20		3.09
P-FS1403	West Flare	1.29	5.70	60.52	388.54	63.78	279.43	2.70	11.86	14.52	63.57
P-FS1503	Hydrocracker Flare	0.01	0.01	0.01	0.01	0.02	0.09	0.03	0.13	0.07	0.32
52-H01	Benfree Unit reboiler	0.04	0.19	2.91	4.72	3.4	14.89	0.46	2.01	7.00	30.66
40-B130	Wabash package boiler	0.05	0.22	3.32	5.38	3.98	17.42	0.6	2.65	9.22	40.37
CE-2	Diesel wastewater pump	0.01	0.01	0.01	0.01	0.05	0.01	0.02	0.01	0.62	0.15
CE-3	Diesel wastewater pump	0.03	0.01	0.01	0.01	0.51	0.13	0.20	0.05	0.45	0.11
CE-4	Diesel wastewater pump	0.03	0.01	0.01	0.01	0.51	0.13	0.20	0.05	0.45	0.11
CE-5	Backup air compressor	0.01	0.06	0.01	0.02	0.29	1.29	0.14	0.61	4.57	11.24
CE-6	Diesel water pump	0.01	0.01	0.01	0.01	0.57	0.14	0.19	0.05	0.61	0.15
CE-8	Backup air compressor	0.01	0.01	0.01	0.01	0.29	0.07	0.14	0.04	2.57	0.64
CE-9	Diesel water pump	0.01	0.01	0.01	0.01	0.28	0.07	0.09	0.02	0.30	0.07
CE-10	Backup Air Compressor	0.02	0.01	0.01	0.01	0.38	0.10	0.12	0.03	0.40	0.10

Point	Emission	PN	I ₁₀	S	O_2	N(Ox	VC	OC	C	O
No.	Unit	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY
CE-11	Diesel water pump	0.03	0.01	0.01	0.01	0.51	0.13	0.17	0.04	0.54	0.14
CE-12	Air compressor	0.02	0.08	0.01	0.02	0.58	2.53	0.16	0.72	3.02	13.23
CE-13	Diesel water pump	0.03	0.01	0.01	0.01	0.51	0.13	0.17	0.04	0.54	0.14
CE-14	Diesel water pump	0.01	0.01	0.01	0.01	0.52	0.13	0.17	0.04	0.55	0.14
CE-15	Backup air compressor	0.02	0.01	0.01	0.01	0.38	0.10	0.12	0.03	0.40	0.10
40-C1168	Air compressor	0.02	0.09	0.01	0.04	0.39	1.68	0.19	0.80	3.34	14.62
P-VENT7	Asphalt light ends							0.91	3.99		
P-VENT6	CCR regenerator vent							2.2	9.63		
P-VENT8	CCR depressurization										
P-SP301	Sulfur Pit										
P-WW1	Process wastewater							10.2	44.67		
EU-WW2	Wastewater Systems							0.14	0.612		
P-API1	Open API Separator							110.82	485.4		
P-API2	Covered API Separator							0.6	2.63		
EU-WW3	SRU Closed Process							0.88	3.83		
EU-WW4	SRU Closed Junction							0.14	0.61		
Le ww-	DHDU P-trap Drains							0.88	3.83		
	DHDU Junction Boxes							0.14	0.61		
EU-WW5	P-trap Drains							0.88	3.83		
	Junction Boxes							0.14	0.61		
EU-WW6	10 P-trap Drains							0.35	1.53		
	2 Junction Boxes							0.14	0.61		
EU-52WW	Benfree Unit Drains							0.88	3.83		
EU-47WW	Hydrogen Plant Unit							0.29	1.29		
52-05	Benfree Unit Separator							0.85	3.73		
GHT-2603	GHDS Oil-Water							2.99	1.11		
P-CWT1	Crude Unit cooling		23.35						23.65		
P-CWT3	FCCU cooling tower		12.84						17.34		
P-CWT5	Alky Unit cooling tower		6.36						7.1		
P-CWT6	GHDS Cooling Tower	0.16	0.7					0.25	1.1		
52-CT	Benfree Unit Cooling	0.04	0.17					0.05	0.22		
P-CWT4	Hydrocracker Cooling	0.25	1.11					0.34	1.47		
P-LR2T	Gas oil truck unloading							3.48			
P-LT2R	Gas oil rail unloading							3.48	0.87		
P-LR3T	Solvent truck loading							65.76	1.15		
P-LT3R	Solvent rail loading rack							64.68	3.81		
P-LR5T	Asphalt truck loading							9.84	9.2		
P-LR5R	Asphalt/slurry rail							17.84	0.08		
P-LR6T	Slurry truck loading rack							0.01	0.01		
P-LR4T	JP-8 truck loading rack							0.47	0.24		
P-SLRR	Sulfur railcar loading										
P-SLRT	Sulfur truck loading rack										
P-1ME258	FCCU regenerator	15.4	67.5	437.4	1916		272.2	3.67	16.06	95.28	75.12
	FCCU Catalyst Hopper	35.04	0.07								
P-TGIS1	Sulfur Recovery Unit	0.22	1	18.9	82.77	3.01	13.2	0.17	0.73	11.9	
IH-1	Kyle House	0.01	0.01	0.01	0.01	0.01	0.04	0.01	0.01	0.01	0.04
IH-2	Main Office	0.01	0.01	0.01	0.04	0.04	0.16	0.01	0.01	0.03	0.14
IH-3	Webb House	0.01	0.01	0.01	0.01	0.01	0.04	0.01	0.01	0.01	0.04
IH-4	Laboratory	0.01	0.01	0.01	0.02	0.02	0.08	0.01	0.01	0.02	0.07

Point	Emission	PM	I 10	S	O ₂	NO	Ox	VC	OC	C	0
No.	Unit	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY
IH-5	Laboratory	0.01	0.01	0.01	0.01	0.01	0.04	0.01	0.01	0.01	0.04
IH-6	Laboratory	0.01	0.01	0.01	0.02	0.02	0.07	0.01	0.01	0.01	0.06
IH-7	Laboratory	0.01	0.01	0.01	0.02	0.02	0.07	0.01	0.01	0.01	0.06
IH-8	Laboratory	0.01	0.01	0.01	0.02	0.02	0.07	0.01	0.01	0.01	0.06
IH-9	Laboratory	0.01	0.01	0.01	0.02	0.02	0.07	0.01	0.01	0.01	0.06
IH-10	Electrical Shop	0.01	0.01	0.01	0.02	0.02	0.08	0.01	0.01	0.02	0.07
IH-11	Maintenance Office	0.01	0.01	0.01	0.01	0.01	0.06	0.01	0.01	0.01	0.06
IH-12	Maintenance Office	0.01	0.01	0.01	0.02	0.02	0.07	0.01	0.01	0.01	0.05
IH-13	East Shop	0.02	0.07	0.05	0.23	0.23	0.99	0.01	0.05	0.19	0.83
IH-14	West Shop	0.02	0.07	0.06	0.28	0.23	0.99	0.01	0.05	0.19	0.83
IE-1	Wastewater Plant	0.66	0.16	0.62	0.15	9.3	2.32	0.74	0.19	2	0.5
IE-2	Portable Generator	0.01	0.01	0.01	0.01	0.06	0.02	0.08	0.02	2.2	0.55
IE-3	Portable Generator	0.01	0.01	0.01	0.01	0.09	0.02	0.12	0.03	3.51	0.88
P-1183	Cummins NT 855-F4	0.75	0.04	0.7	0.03	10.54	0.53	0.85	0.04	2.27	0.11
P-1184	Caterpillar 3406B	0.83	0.04	0.77	0.04	11.63	0.58	0.94	0.05	2.51	0.13
P-1185	Cummins QSM11	0.88	0.04	0.82	0.04	12.4	0.62	1	0.05	2.67	0.13
IT-1	Shop							0.01	0.01		
IT-2	Shop							0.01	0.01		
IT-3	FCCU			1		1		0.01	0.01		
IT-4	Platformer							0.01	0.01		
IT-5	FCCU							0.01	0.01		
T-1417	Truck rack							0.01	0.01		
IT-7	#2 Crude Unit							0.01	0.01		
IT-8	#2 Crude Unit							0.01	0.01		
IT-9	FCCU							0.01	0.01		
IT-10	FCCU							0.01	0.01		
IT-11	#1 Crude Unit							0.01	0.01		
IT-13	72 Manifold							0.01	0.01		
T-1414	Truck rack							0.01	0.01		
T-1416	Truck rack							0.01	0.01		
IT-17	Crude Vacuum Unit							0.01	0.01		
IT-18	Hydrocracker							0.01	0.01		
IT-20	Boilerhouse							0.01	0.01		
IT-21	FCCU							0.01	0.01		
IT-22	Lt. Oils Blender							0.01	0.01		
IT-23	FCCU							0.01	0.01		
IT-24	#1 Crude Unit							0.01	0.01		
IT-25	#1 Crude Unit			-		-		0.01	0.01		
IT-26	#2 Crude Unit							0.01	0.01		
IT-27	#2 Crude Unit							0.01	0.01		
IT-28	72 Manifold							0.01	0.01		
IT-29	#1 Crude Unit							0.01	0.01		
IT-30	#2 Crude Unit							0.01	0.01		
IT-31	#2 Crude Unit							0.01	0.01		
IT-32	Platformer							0.01	0.01		
IT-33	Alky Unit							0.01	0.01		
IT-34	FCCU							0.01	0.01		
IT-35	72 Manifold							0.01	0.01		
IT-36	FCCU							0.01	0.01		
IT-37	Products Handling							0.01	0.01		
	·										

Point	Emission	PM	I 10	S	O_2	NO	Ox	VO	OC	C	O
No.	Unit	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY
T-1413	Truck rack			1				0.01	0.01		
IT-40	FCCU							0.01	0.01		
IT-41	#1 Crude Unit							0.01	0.01		
IT-42	#2 Crude Unit							0.01	0.01		
IT-43	FCCU							0.01	0.01		
IT-44	Alky Unit							0.01	0.01		
T-1418	Truck rack							0.01	0.01		
T-6092	72 Manifold							0.01	0.01		
T-1426	Truck rack							0.01	0.01		
P-T141	Diesel blending							0.01	0.01		
P-T2001	Asphalt blending							0.81	1.76		
P-T2002	Asphalt blending							0.18	0.4		
T-1901	Firefighter training							0.01	0.01		
P-T605A	Tank 605A							3.44	15.06		
P-T605B	Tank 605B							3.44	15.06		
P-T603	Tank 603							1.18	5.18		
P-T604A	Tank 604A							0.80	3.48		
P-T604B	Tank 604B							0.80	3.48		
P-T1501	Tank 1501							2.72	11.9		
P-T1502	Tank 1502							2.72	11.9		
P-T1503	Tank 1503							2.72	11.9		
P-T1507	Tank 1507							2.72	11.9		
P-T1504	Tank 1504							2.41	10.58		
P-T1505	Tank 1505							2.41	10.58		
P-T1506	Tank 1506							2.41	10.58		
P-LR7R	Distillate Railcar Load							10.55	1.41		
P- HCATLOAD	Catalyst Loading	10.34	0.12								
P-HCAT- UNLOAD	Catalyst Unloading	10.34	0.12								
46-T500	Tank 001							-	0.16		-
46-T501	Tank 002								0.16		
46-T502	Tank 003								0.37		
46-T503	Tank 004								0.37		
46-T504	Tank 005								1.28		
46-T505	Tank 006								1.28		
EU-3701	Distillate Handling								6.28		
	TOTALS	78.74	127.93	584.53	2,642.4	366.61	1,388.8	765.69	2,068.8	332.49	998.4
	Existing Totals	78.74	127.93		2,642.4	366.61	1,388.8	761.01	2,067.7	332.49	998.4
	CHANGES	0	0	0	0	0	0	4.68	1.1	0	0

HAZARDOUS AIR POLLUTANTS

TI D	GAGN. I	Emis	ssions
HAP	CAS Number	lb/hr	TPY
Antimony	7440360	0.079	0.303
Benzene	71432	1.755	7.69
Chlorine	7782505	0.033	0.15
Cumene	98828	0.043	0.19
Diethanolamine	111422	0.001	0.01
Ethylbenzene	100414	0.560	2.45
Ethylene	74851	0.533	2.34
Formaldehyde	50000	0.144	0.63
Glycol ethers		0.033	0.15
n-Hexane	110543	3.893	17.05
HCl	7647010	0.667	2.92
HF	7664393	0.325	1.43
Nickel	7440020	0.240	1.053
Methanol	67561	0.033	0.82
Molybdenum	7439987	0.033	0.15
Naphthalene	91203	0.064	0.28
Nickel	7440020	0.053	0.23
Propylene	115071	1.736	7.60
Quinoline	91225	0.001	0.01
Tetrachloroethylene	127184	0.033	0.15
Toluene	108883	4.377	19.17
2,2,4-Trimethylpentane	540841	1.168	5.12
Vanadium	7440662	0.405	1.774
Xylene	1330207	3.643	15.96

Greenhouse gas emissions were stated at 12,644,009 TPY using the methods of 40 CFR Part 98.

The primary discharge points for air emissions at the facility are tabulated as follows.

SIGNIFICANT DISCHARGE POINTS

Point ID	Description	Height Feet	Diameter Inches	Flow Rate ACFM	Temp.
P-CH1	Crude fractionation heater (2 stacks)	63	52	49,063	880
P-CH2	Crude charge heater (2 stacks)	75	39	20,413	700
P-CH3	Crude preflash reboiler	67	54	12,523	640
P-CH151	Crude charge heater	130	69	24,565	490
P-CH121	Vacuum charge heater (2 stacks)	81	33	8,797	880
P-VH101	No. 2 Vacuum charge heater	57	42	16,288	1000
P-JH1	Hydrocracker reactor heater	100	48	17,456	900
P-JH101	Hydrocracker fractionator reboiler	100	48	18,155	780
P-PH3	Unifiner stripper reboiler	49	42	21,212	1020

Point ID	Description	Height Feet	Diameter Inches	Flow Rate ACFM	Temp.
P-HH1	Hysomer heater	49	36	4,870	420
P-H152	No. 2 splitter reboiler	71	42	4,545	590
P-5H1	Alkylation depropanizer reboiler	131	54	34,017	760
P-F1301	Asphalt oxidizer incinerator	101	41	1,840	980
40-H1101	Steam boiler No. 4	110	60	23,496	340
22-B131	FCCU Boiler	38	48	23,940	325
P-H1302	Tank 101 heater	30	42	4,167	750
P-H1303	Tank 101 heater	50	36	6,679	750
P-HT120	Tank 120 heater	30	12	356	550
P-HT265	Tank 265 heater	34	10	352	550
P-HT601	Tank 601 heater	39	12	247	550
P-HT1321	Tank 1321 heater	44	12	247	550
P-HT1323	Tank 1323 heater	32	12	247	550
P-HT1324	Tank 1324 heater (2 stacks)	44	10	1,747	550
P-1H4	FCCU feed preheater	141	72	31,912	430
P-H350	CCR charge heater	152	78	43,112	500
P-PH2	Unifiner charge heater	50	49	7,721	700
P-H601	ROSE heater	100	39	9,635	680
P-H1301	Tank 107 heater	50	20	1,207	750
P-HT134	Tank 134 heater (2 stacks)	48	13	3,103	550
P-HT136	Tank 136 heater (2 stacks)	48	13	3,103	550
P-HT264	Tank 264 heater	43	12	371	550
P-VENT6	CCR Regenerator vent	159	4	95	880
P-1ME258	FCCU Regenerator	140	72	110,203	580
P-H1331	Asphalt Hot Oil Heater	9	24	2,783	440
DHH-801	Hydrotreater charge heater	100	54	15,654	500
DHH-802	Fractionator charge heater	100	62	23,525	500
H-356	CCR charge heater	100	56	10,438	500
P-JH301	Fractionator charge heater	100	56	6,406	500
GHH-2601	Splitter reboiler	110	52	12,879	521
GHH-2602	GHDS Reactor heater	104	32	6,503	595
GHH-2603	GHDS Stabilizer Reboiler	101	32	5,841	550
52-H01	Benfree Unit Reboiler	144	39	10,451	539
REFORMER	Hydrogen Plant Reformer Heater	68.5	35	34,327	400
40-B130	Wabash Package Boiler	20	36	38,512	750

SECTION VI. INSIGNIFICANT ACTIVITIES

The insignificant activities identified and justified in the application and listed in OAC 252:100-8, Appendix I, are listed below. Recordkeeping for activities indicated with "*" is listed in the Specific Conditions.

- Space heaters, boilers, process heaters and emergency flares less than or equal to 5 MMBTUH heat input (commercial natural gas). Several of the non-NSPS heaters in EUG 38 and all of the heaters in EUG 90 are in this category.
- Emissions from stationary internal combustion engines rated less than 50 HP output. The facility included lawn maintenance equipment (mowers, string trimmers, etc.) in this category.
- * Emissions from fuel storage/dispensing equipment operated solely for facility owned vehicles if fuel throughput is not more than 2,175 gallons/day, averaged over a 30-day period. The facility has a vehicle fueling operation, loading gasoline and diesel.
- * Storage tanks with less than or equal to 10,000 gallons capacity that store volatile organic liquids with a true vapor pressure less than or equal to 1.0 psia at maximum storage temperature. The storage tanks in EUG No. 92 are in this category.
- * Emissions from storage tanks constructed with a capacity less than 39,894 gallons which store VOC with a vapor pressure less than 1.5 psia at maximum storage temperature. This category overlaps with the above category, including the tanks in EUG 92.
- Additions or upgrades of instrumentation or control systems that result in emissions increases less than the pollutant quantities specified in OAC 252:100-8-3(e)(1). None listed but may be in the future.
- Alkaline/phosphate washers and associated burners. These are part of facility maintenance operations.
- Cold degreasing operations utilizing solvents that are denser than air. These are part of facility maintenance operations.
- Welding and soldering operations utilizing less than 100 pounds of solder and 53 tons per years of electrodes. These are conducted as part of facility maintenance, which is a "trivial activity," therefore no recordkeeping will be required.
- Torch cutting and welding of under 200,000 tons of steel fabricated. These are conducted as part of facility maintenance, which is a "trivial activity", therefore no recordkeeping will be required.
- Site restoration and/or bioremediation activities of <5 years expected duration. This category overlaps with the following category, and the facility includes a soil aeration pad.
- Hydrocarbon-contaminated soil aeration pads utilized for soils excavated at the facility only. The facility includes a soil aeration pad.

- * Non-commercial water washing operations and drum crushing operations (less than 2,250 barrels/year) of empty barrels less than or equal to 55 gallons with less than three percent by volume of residual material. A drum reclamation operation is present.
- Hazardous waste and hazardous materials drum staging areas. The facility includes a staging area for drummed hazardous wastes.
- Sanitary sewage collection and treatment facilities other than incinerators and Publicly Owned Treatment Works (POTW). Stacks or vents for sanitary sewer plumbing traps are also included (i.e., lift station)
- Exhaust systems for chemical, paint, and/or solvent storage rooms or cabinets, including hazardous waste satellite (accumulation) areas. The facility maintenance shop and laboratory have chemical storage areas.
- Hand wiping and spraying of solvents from containers with less than 1 liter capacity used for spot cleaning and/or degreasing in ozone attainment areas. This is conducted as part of facility maintenance.
- * Activities having the potential to emit no more than 5 TPY (actual) of any criteria pollutant. This includes process vents: Reformer Deaerator Vent, Reformer Blowdown Vent, and Reformer PSA Hydrogen Vent.

SECTION VII. OKLAHOMA AIR POLLUTION CONTROL RULES

OAC 252:100-1 (General Provisions)

[Applicable]

Subchapter 1 includes definitions but there are no regulatory requirements.

OAC 252:100-2 (Incorporation by Reference)

[Applicable]

This subchapter incorporates by reference applicable provisions of Title 40 of the Code of Federal Regulations. These requirements are addressed in the "Federal Regulations" section.

OAC 252:100-3 (Air Quality Standards and Increments)

[Applicable]

Primary Standards are in Appendix E and Secondary Standards are in Appendix F of the Air Pollution Control Rules. At this time, all of Oklahoma is in attainment of these standards.

OAC 252:100-5 (Registration, Emission Inventory, and Annual Operating Fees) [Applicable] The owner or operator of any facility that is a source of air emissions shall submit a complete emission inventory annually on forms obtained from the Air Quality Division. An emission inventory was submitted and fees paid for previous years as required.

OAC 252:100-8 (Permits for Part 70 Sources)

[Applicable]

<u>Part 5</u> includes the general administrative requirements for part 70 permits. Any planned changes in the operation of the facility which result in emissions not authorized in the permit and which exceed the "Insignificant Activities" or "Trivial Activities" thresholds require prior notification to AQD and may require a permit modification. Insignificant activities mean individual emission units that either are on the list in Appendix I (OAC 252:100) or whose actual calendar year emissions do not exceed the following limits:

- 5 TPY of any one criteria pollutant
- 2 TPY of any one hazardous air pollutant (HAP) or 5 TPY of multiple HAPs or 20% of any threshold less than 10 TPY for single HAP that the EPA may establish by rule

Emission and operating limitations have been established from previous permits and applications for those emission units required to have limits.

OAC 252:100-9 (Excess Emissions Reporting Requirements)

[Applicable]

Except as provided in OAC 252:100-9-7(a)(1), the owner or operator of a source of excess emissions shall notify the Director as soon as possible but no later than 4:30 p.m. the following working day of the first occurrence of excess emissions in each excess emission event. No later than thirty (30) calendar days after the start of any excess emission event, the owner or operator of an air contaminant source from which excess emissions have occurred shall submit a report for each excess emission event describing the extent of the event and the actions taken by the owner or operator of the facility in response to this event. Request for mitigation, as described in OAC 252:100-9-8, shall be included in the excess emission event report. Additional reporting may be required in the case of ongoing emission events and in the case of excess emissions reporting required by 40 CFR Parts 60, 61, or 63.

OAC 252:100-13 (Open Burning)

[Applicable]

Open burning of refuse and other combustible material is prohibited except as authorized in the specific examples and under the conditions listed in this subchapter.

OAC 252:100-19 (Particulate Matter)

[Applicable]

This subchapter specifies limits for fuel-burning equipment particulate emissions based on heat input capacity. The following table compares limitations to calculated emissions. All units are in compliance with Subchapter 19.

COMPARISON OF PM EMISSIONS TO LIMITATIONS OF OAC 252:100-19

Unit	Heat Input Capacity, MMBTUH	PM Emission Limitation of OAC 252:100-19, lb/MMBTU	Anticipated PM Emission Rate, lb/MMBTU
P-CH1	128	0.33	0.00051
P-CH2	78	0.37	0.00051
P-CH3	47	0.24	0.00051
P-CH151	78	0.36	0.00051
P-CH121	44	0.43	0.00051
P-JH1 & JH2	83	0.35	0.00051

Unit Heat Input Capacity, MMBTUH		PM Emission Limitation of OAC 252:100-19, lb/MMBTU	Anticipated PM Emission Rate, lb/MMBTU	
P-JH101	70	0.38	0.00051	
P-PH3	41.2	0.42	0.00051	
P-HH1	32.5	0.45	0.00051	
P-H152	30	0.45	0.00051	
P-5H1	86	0.35	0.00051	
P-F1301	16.8	0.57	0.00051	
40-H1101	99.2	0.35	0.00051	
P-SB#5	72	0.36	0.00051	
22-B131	99.8	0.35	0.00051	
P-H1302	10	0.60	0.00051	
P-H1303	16.8	0.57	0.00051	
P-HT120	1.0	0.60	0.00051	
P-HT265	1.0	0.60	0.00051	
P-HT601	0.7	0.60	0.00051	
P-HT1321	0.7	0.60	0.00051	
P-HT1323	0.7	0.60	0.00051	
P-HT1324	5.0	0.60	0.00051	
P-1H4	121	0.33	0.00051	
P-H350	172	0.32	0.00051	
P-H351	37.32	0.43	0.00051	
P-H352	52.20	0.41	0.00051	
P-PH2	43.5	0.42	0.00051	
P-H601	48.6	0.41	0.00051	
P-H1301	2.82	0.60	0.00051	
P-HT134	8.4	0.60	0.00051	
P-HT136	8.4	0.60	0.00051	
P-HT264	1.0	0.60	0.00051	
P-FS1402	0.1	0.60	0.00051	
P-FS1401	0.1	0.60	0.00051	
P-H1331	8.4 84	0.60 0.37	0.00051	
P-VH101			0.00051	
P-DHH801 P-DHH802	45.29	0.42	0.00051 0.00051	
52-H01	67.93 65	0.38	0.00051	
P-H356	56	0.39	0.00051	
P-H330 P-JH301	40	0.40	0.00051	
P-JH301 P-GHH2601	40	0.43	0.00051	
P-GHH2601 P-GHH2602	16.8	0.53	0.00051	
P-GHH2602 P-GHH2603	16.8	0.53	0.00051	
40-B130	97	0.34	0.00051	
P-H48001	73	0.34	0.0051	
CE-2	0.6	0.6	0.0031	
CE-3	0.6	0.6	0.017	

Unit	Heat Input Capacity, MMBTUH	PM Emission Limitation of OAC 252:100-19, lb/MMBTU	Anticipated PM Emission Rate, lb/MMBTU
CE-4	0.6	0.6	0.017
REFORMER	126	0.33	0.006
CE-5	3.25	0.6	0.003
CE-6	0.59	0.6	0.004
CE-8	32.5	0.6	0.003
CE-9	0.29	0.6	0.004
CE-10	0.39	0.6	0.05
CE-11	0.54	0.6	0.06
CE-12	3.17	0.6	0.009
CE-13	0.54	0.6	0.06
CE-14	0.54	0.6	0.006
CE-15	0.39	0.6	0.05
40-C1168	4.64	0.6	0.02

The flares do not meet the definition of "fuel-burning equipment," therefore are not subject to these standards.

Subchapter 19 also limits PM emissions from various processes which are both process and fuel-burning equipment. Limitations are specified based on process weight rate. The process weight at the FCCU is the sum of the catalyst circulation rate (up to 800 TPH) plus the gas oil charge rate. Assuming a specific gravity of 1.05 and a feed rate up to 833 BPH, a gas oil feed rate of 153 TPH is calculated for a total process weight rate of 953 TPH. The following table shows the process weight rates, allowable PM emissions rates, and permit limitations. The anticipated PM emissions rate from the FCCU is in compliance with Subchapter 19.

COMPARISON OF PM EMISSION RATES TO ALLOWABLE EMISSION RATES UNDER OAC 252:100-19

Process Unit	Process Weight, TPH	OAC 252:100 -19 Allowable PM Emissions, lb/hr	PM Emissions, lb/hr
FCCU	953	77.0	15.4
Asphalt unit (P-F1301)	40	42.5	0.13

OAC 252:100-25 (Visible Emissions and Particulates)

[Applicable]

No discharge of greater than 20% opacity is allowed except for short-term occurrences which consist of not more than one six-minute period in any consecutive 60 minutes, not to exceed three such periods in any consecutive 24 hours. In no case shall the average of any six-minute period exceed 60% opacity. The FCCU is subject to an NSPS opacity limitation; therefore, it is not subject to Subchapter 25.

OAC 252:100-29 (Fugitive Dust)

[Applicable]

Subchapter 29 prohibits the handling, transportation, or disposition of any substance likely to become airborne or windborne without taking "reasonable precautions" to minimize emissions of fugitive dust. No person shall cause or permit the discharge of any visible fugitive dust emissions beyond the property line on which the emissions originate in such a manner as to damage or to interfere with the use of adjacent properties, or cause air quality standards to be exceeded, or to interfere with the maintenance of air quality standards. Most facility roads are paved, and FCCU catalyst handling equipment is enclosed. These measures achieve compliance with the "reasonable precautions" requirement.

OAC 252:100-31 (Sulfur Compounds)

[Applicable]

<u>Part 2</u> limits the ambient air impact of H_2S emissions from any new or existing source to 0.2 ppm at standard conditions, based on a 24-hour average. Air dispersion modeling has been conducted showing maximum H_2S impacts from the refinery at 0.036 ppm (50.1 ug/m³). These impacts are in compliance with Part 2.

Part 5 limits sulfur dioxide emissions from new equipment (constructed after July 1, 1972). For gaseous fuels the limit is 0.2 lb/million BTU heat input., and for liquid fuels the limit is 0.8 lb/MMBTU. The gas fuel limit is equivalent to approximately 0.2 weight percent sulfur in the fuel gas which is equivalent to 2,000 ppm sulfur. All fuel-burning equipment constructed after June 11, 1973, is also subject to NSPS Subpart J which specifies a more stringent limitation: 160 ppm sulfur, or about 0.0234 lb/MMBTU. The permit will require the use of commercial natural gas or sweetened refinery fuel gas with a maximum fuel sulfur content of 160 ppm for gas-fired fuel-burning equipment constructed after July 1, 1972, to ensure compliance with Subchapter 31. One heater, P-1H4, is required to use only commercial-grade natural gas or sweetened refinery fuel gas with a maximum fuel sulfur content of 160 ppm sulfur. The engines in EUG-48 are subject to a limitation in NSPS Subpart IIII of 15 ppm, which is equivalent to 0.015 lb/MMBTU.

<u>Part 5</u> (OAC 252:100-31-26) requires petroleum and natural gas processes that were not in being before December 31, 1974, to reduce H₂S by at least 95% by removal or oxidation. This facility includes a sulfur recovery unit and flares off-gases from other processes.

<u>Part 5</u> requires H₂S contained in the waste gas stream from any petroleum or natural gas process equipment to be reduced by 95% by removal or by being oxidized to SO₂ prior to being emitted to the ambient air. This requirement does not apply if a facility's emissions of H₂S do not exceed 0.3 lb/hr, two-hour average. The owner or operator shall install, maintain, and operate an alarm system that will signal a malfunction for all thermal devices used to control H₂S emissions from petroleum and natural gas processing facilities regulated under OAC 252:100-26(1).

Emissions from the liquid sulfur storage pit (EUG-54), liquid sulfur storage vessel, the railcar loading operations (EUG-82), and the regenerated amine storage vessels (Insignificant Activities) are estimated below the exemption level. However, the liquid sulfur storage vessel will be vented to the SRU incinerator (EUG-87).

The following requirements apply to any gas sweetening unit or petroleum refinery process equipment with a sulfur content of greater than 0.54 LT/D in the acid gas stream or with an emission rate of 100 lb/hr or less of SO_X expressed as SO₂, two-hour average. Sulfur recovery units operating in conjunction with any refinery process shall have the sulfur recovery efficiencies required in OAC 252:100-31-26(2)(C) through (2)(F). When the sulfur content of the acid gas stream from a gas sweetening unit or refinery process is greater than 5.0 LT/D but less than or equal to 150.0 LT/D, the required recovery efficiency of the sulfur recovery unit shall be calculated using the following formula, where Z is the minimum sulfur recovery efficiency required and X is the sulfur feed rate, expressed in LT/D of sulfur and rounded to one decimal place: Z =92.34X^{0.00774}.

The SRU has a capacity of approximately 50 LTD. The required SO₂ reduction efficiency for this unit using the formula is 95.1%. The SRU reduction efficiency is expected to exceed 99.9%. All applicable requirements will be incorporated into the permit.

OAC 252:100-33 (Nitrogen Oxides)

[Applicable]

Subchapter 33 affects new fuel-burning equipment with a rated heat input of 50 MMBTUH or more. The following table compared anticipated NOx emission rates with applicable limitations of Subchapter 33 for those units which are subject to Subchapter 33, i.e., equipment that was either constructed, altered, replaced, or rebuilt after February 14, 1972, or is larger than the 50 MMBTUH de minimis level; the thermal oxidizer and flares are not defined as "fuel-burning equipment."

COMPLIANCE WITH NO2 EMISSIONS LIMITATIONS

Unit	Description	NO ₂ Emission Limitation of OAC 252:100-33, lb/MMBTU	Anticipated NO ₂ Emission Rate, lb/MMBTU
P-1H4	Feed Preheater	0.2	0.133
22-B131	FCCU Boiler	0.2	0.036
P-VH101	No. 2 Vacuum Charge Heater	0.2	0.06
40-H1101	Indeck Steam Boiler	0.2	0.06
P-H48001	SRU Hot Oil Heater	0.2	0.06
P-CH151	Crude Charge Heater	0.2	0.035
40-B130	Wabash Package Boiler	0.2	0.11
52-H01	Benfree Reboiler	0.2	0.04
P-DHH802	DHT Fractionator Heater	0.2	0.06
H-350	CCR Charge Heater	0.2	0.10
H-352	CCR Charge Heater	0.2	0.10
REFORMER	Hydrogen Plant Reformer	0.2	0.06
H-356	CCR Charge Heater	0.2	0.06

OAC 252:100-35 (Carbon Monoxide)

[Applicable]

Subchapter 35 affects the petroleum catalytic cracking unit (FCCU). Subchapter 35 requires "complete" secondary combustion, which is defined in the rule as removal of 93% or more of the CO generated. The catalyst regenerator provides essentially complete CO combustion, achieving compliance with Subchapter 35.

OAC 252:100-37 (Volatile Organic Compounds)

[Part 5 and 7 Applicable]

Part 3 requires storage tanks constructed after December 28, 1974, with a capacity of 400 gallons or more and storing a VOC with a vapor pressure greater than 1.5 psia to be equipped with a permanent submerged fill pipe or with an organic vapor recovery system. Part 3 also requires storage tanks constructed after December 28, 1974, with a capacity of more than 40,000 gallons and storing a VOC with a vapor pressure greater than 1.5 psia to be equipped with a either an external floating roof, a fixed roof with an internal floating cover, a vapor recovery system, or other equally effective control methods approved by the DEQ. Tanks subject to the floating roof standards of NSPS, Subparts K, Ka, or Kb are exempt from these requirements. All tanks constructed after December 28, 1974, are either subject to NSPS control requirements or contain organic liquids with vapor pressures below 1.5 psia.

Tanks storing animal fats, soybean oil, plant oils, distillate, diesel, jet fuel kerosene, asphalt, acid, caustic, or sour water are not subject because the products are not VOCs with a vapor pressure of 1.5 or greater under actual storage conditions. The gasoline and crude oil storage tanks with floating roofs are subject to the floating roof requirements of NSPS, therefore not subject to Subchapter 37.

Part 3 applies to VOC loading facilities constructed after December 24, 1974. Facilities with a throughput greater than 40,000 gallons/day are required to be equipped with a vapor-collection and disposal system unless all loading is accomplished by bottom loading with the hatches of the tank truck or trailer closed. Loading facilities subject to NSPS Subpart XX or NESHAP Subpart R are exempt from these requirements. NESHAP Subpart CC requires compliance with Subpart R. Facilities loading distillate are not subject because the product is not a VOC with a vapor pressure of 1.5 psia or greater under actual storage conditions.

The light products loading terminal at the refinery is equipped with a vapor-collection and disposal system. This terminal is also subject to NESHAP Subpart CC and is exempt from these requirements.

<u>Part 5</u> limits the VOC content of coating operations. This facility does not normally conduct coating or painting operations except for routine maintenance of the facility and equipment which is exempt.

<u>Part 7</u> requires all VOC gases from a vapor recovery blowdown system to be burned by a smokeless flare or equally effective control device unless it is inconsistent with the "Minimum Federal Safety Standards for the Transportation of Natural and Other Gas by Pipeline" or any State of Oklahoma regulatory agency.

<u>Part 7</u> requires fuel-burning and refuse-burning equipment to be cleaned, operated, and maintained so as to minimize emissions of VOCs. Based on manufacturer's data and good engineering practice, the equipment must not overloaded and temperature and available air must be sufficient to provide essentially complete combustion.

<u>Part 7</u> requires effluent water separators openings or floating roofs to be sealed or equipped with an organic vapor recovery system. The oil water separators process "slop oil" with a vapor pressure below 1.5 psia, the threshold of applicability of Subchapter 37.

OAC 252:100-42 (Toxic Air Contaminants (TAC))

[Applicable]

This subchapter regulates TAC that are emitted into the ambient air in areas of concern (AOC). Any work practice, material substitution, or control equipment required by the Department prior to June 11, 2004, to control a TAC, shall be retained, unless a modification is approved by the Director. Since no AOC has been designated there are no specific requirements for this facility at this time.

OAC 252:100-43 (Testing, Monitoring, and Recordkeeping)

[Applicable]

This subchapter provides general requirements for testing, monitoring and recordkeeping and applies to any testing, monitoring or recordkeeping activity conducted at any stationary source. To determine compliance with emissions limitations or standards, the Air Quality Director may require the owner or operator of any source in the state of Oklahoma to install, maintain and operate monitoring equipment or to conduct tests, including stack tests, of the air contaminant source. All

required testing must be conducted by methods approved by the Air Quality Director and under the direction of qualified personnel. A notice-of-intent to test and a testing protocol shall be submitted to Air Quality at least 30 days prior to any EPA Reference Method stack tests. Emissions and other data required to demonstrate compliance with any federal or state emission limit or standard, or any requirement set forth in a valid permit shall be recorded, maintained, and submitted as required by this subchapter, an applicable rule, or permit requirement. Data from any required testing or monitoring not conducted in accordance with the provisions of this subchapter shall be considered invalid. Nothing shall preclude the use, including the exclusive use, of any credible evidence or information relevant to whether a source would have been in compliance with applicable requirements if the appropriate performance or compliance test or procedure had been performed.

Stacks with permitted emissions above 100 TPY are required to do EPA method stack testing or install Continuous Emissions Monitoring Systems (CEMS). These requirements have been incorporated for the FCCU and Heater P-CH1.

The following Oklahoma Air Pollution Control Rules are not applicable to this facility:

OAC 252:100-11	Alternative Emissions Reduction	not requested
OAC 252:100-15	Mobile Sources	not in source category
OAC 252:100-17	Incinerators	not type of emission unit
OAC 252:100-23	Cotton Gins	not type of emission unit
OAC 252:100-24	Grain Elevators	not in source category
OAC 252:100-39	Nonattainment Areas	not in area category
OAC 252:100-47	Landfills	not in source category

SECTION VIII. FEDERAL REGULATIONS

PSD, 40 CFR Part 52

[Not Applicable to This Project]

The facility is a major stationary source for NOx, CO, SO₂, PM₁₀, VOC, and GHG. The emissions changes are below PSD levels of significance. Any future increases must be evaluated in the context of PSD significance levels: 40 TPY NOx, 100 TPY CO, 40 TPY SO₂, 15 TPY PM₁₀, 10 TPY PM_{2.5}, 40 TPY VOC, 10 TPY TRS, 0.6 TPY lead, or 75,000 TPY GHG.

NSPS, 40 CFR Part 60 [Subparts A, Dc, J, Ja, Kb, GGG, GGGa, and IIII Are Applicable] Subpart A (General Provisions) specifies general control device requirements for control devices used to comply with applicable subparts. The West Flare and Hydrocracker Flare (EUG 45) receive VOC emissions from process units which are subject to NSPS Subpart GGG or GGGa. Standards for flares used to comply with emissions limitations are stated in 40 CFR § 60.18; "the standards are placed here for administrative convenience and only apply to facilities covered by subparts referring to this section." Subparts GGG and GGGa require compliance with 40 CFR §§ 60.482-10, and 60.482-10 requires compliance with § 60.18 for flares used to comply with the standards. 40 CFR § 60.18(f)(5) states that the maximum steam-assisted flare exit velocity shall be determined by the following equation:

$$Log_{10} (V_{max}) = (H_t + 28.8)/31.7$$

where H_t = the net heating value of the flared gas, MJ/SCM. The section further requires that the flare be monitored for the presence of a pilot flame and that the flare be operated with no visible emissions.

By the overlap provisions of NESHAP Subpart CC, flares subject to § 63.11 are subject only to Subpart CC as of January 30, 2019.

<u>Subparts D and Da</u> (Steam Generating Units and Electric Utility Steam Generating Units) affect boilers with a rated heat input greater than 250 MMBTUH. The refinery does not have a boiler larger than 250 MMBTUH.

<u>Subpart Db</u> (Steam Generating Units) affects boilers with a rated heat input above 100 MMBTUH which commenced construction, reconstruction, or modification after June 19, 1984. The Indeck, Wabash, and FCCU steam boilers are smaller than 100 MMBTUH.

<u>Subpart Dc</u> (Steam Generating Units) affects boilers with a rated heat input between 10 and 100 MMBTUH which commenced construction, reconstruction, or modification after June 9, 1989. Subpart Dc specifically excludes process heaters. The two boilers in EUG-36 were constructed after 1989, as well as the boiler in EUG-47, and are subject to Subpart Dc. Gas-fired boilers are required only to keep records of fuels used.

<u>Subpart J</u> (Petroleum Refineries) applies to the following affected facilities in petroleum refineries: fluid catalytic cracking unit catalyst regenerators, fuel gas combustion devices, and Claus sulfur recovery plants. All fluid catalytic cracking unit catalyst regenerators which commence construction, reconstruction, or modification after June 11, 1973, and on or before May 14, 2007, are subject to the following limitations:

- a PM emission limitation of 1.0 lb/1,000 lbs of coke burn-off, which is required to be continuously monitored and recorded;
- a CO emission limitation of 500 ppm by volume on a dry basis which is required to be continuously monitored and recorded; and

All fuel combustion devices which commence construction, reconstruction, or modification after June 11, 1973, and on or before May 14, 2007, are subject to a fuel gas H₂S limitation of 0.10 grains/DSCF which is required to be continuously monitored and recorded. Fuel gas combusted by the affected units is monitored and recorded at one location. All emission limits, monitoring, and recordkeeping requirements have been incorporated into the permit.

Claus sulfur recovery unit devices which commence construction, reconstruction, or modification after June 11, 1973, and on or before May 14, 2007, using an oxidative control followed by incineration are subject to a limit of 250 ppm SO₂, corrected to 0% oxygen.

<u>Subpart Ja</u> (Petroleum Refineries) applies to the following affected facilities in petroleum refineries: fluid catalytic cracking units (FCCU), fluid coking units (FCCU), delayed coking units, fuel gas combustion devices, including flares and process heaters, and sulfur recovery plants. Only those affected facilities that begin construction, modification, or reconstruction after May 14, 2007, are subject to this subpart.

Under 40 CFR § 60.100a(c)(1), adding any new piping from a process unit to a flare is explicitly considered a modification, making that flare subject to Subpart Ja flaring volume limits (250,000 SCF/day, 30-day rolling average) in 40 CFR § 60.102a(g)(3), the work practice standards of 40 CFR

§ 60.103a, and performance testing requirements under 40 CFR § 60.8. All flares will be treated as being subject to Subpart Ja.

Fuel gas combustion device means any equipment, such as process heaters, boilers and flares used to combust fuel gas, except facilities in which gases are combusted to produce sulfur or sulfuric acid. The new heaters in the Hydrogen Plant, GHDS Unit, and the Benfree Unit reboiler are considered fuel gas combustion devices which commenced construction after May 14, 2007, and are subject to the final standards promulgated in this subpart. The heaters in the DHT Unit commenced construction in 2006; therefore, they pre-date Subpart Ja standards.

Subpart Ja included NOx standards for units which are larger than 40 MMBTUH capacity. Two of the three heaters in the GHDS Unit are smaller than the 40 MMBTUH (HHV) threshold. The Benfree Unit reboiler is subject to a limitation of 0.04 lb/MMBTU NOx. With manufacturer emissions guarantees of 0.035 lb/MMBTU, the reboiler will comply with Subpart Ja. The Wabash Boiler and Unit GHH2601 are also subject to Subpart Ja. The Hydrogen Plant Reformer heater is subject to a NOx limitation of 60 ppmv (dry basis, corrected to 0-percent excess air) or 0.060 lb/MMBTU.

Subpart K (Storage Vessels for Petroleum Liquids) affects storage vessels for petroleum liquids which have a storage capacity greater than 40,000 gallons but less than 65,000 gallons and which commenced construction, reconstruction, or modification after March 8, 1974, or which have a capacity greater than 65,000 gallons which commenced construction, reconstruction, or modification after June 11, 1973, and prior to May 19, 1978. "Petroleum liquids" does not include diesel, jet fuel, and kerosene. Storage vessels storing a petroleum liquid with a true vapor pressure of 1.5 psia to 11.1 psia are required to be equipped with a floating roof, a vapor recovery system, or their equivalent. If the true vapor pressure exceeds 11.1 psia, the storage vessel is required to be equipped with a vapor recovery system. All required recordkeeping and equipment standards will be incorporated into the permit. The tanks in EUGs 3, 8, 10, and 14, were subject to Subpart K, but with the overlap provisions of MACT Subpart CC, are now subject only to Subpart CC.

<u>Subpart Ka</u> (Storage Vessels for Petroleum Liquids) affects storage vessels for petroleum liquids which have a storage capacity greater than 40,000 gallons and which commenced construction, reconstruction, or modification after May 18, 1978, and prior to July 23, 1984. Storage vessels storing a petroleum liquid with a true vapor pressure of 1.5 psia to 11.1 psia are required to be equipped with an external floating roof, a fixed roof with an internal floating cover, a vapor recovery system, or their equivalent. The type of roof or control has to meet the specifications of this Subpart. All required recordkeeping and equipment standards will be incorporated into the permit. The vessels in EUGs 5 and 13 were subject to Subpart Ka, but with the overlap provisions of MACT Subpart CC, they are now subject only to MACT Subpart CC.

<u>Subpart Kb</u> (VOL Storage Vessels) affects storage vessels for volatile organic liquids (VOLs) which have a storage capacity greater than or equal to 19,813 gallons and which commenced construction, reconstruction, or modification after July 23, 1984. Tanks with a capacity of less than 39,890 gallons and which store a VOL with a maximum true vapor pressure of less than 2.175 psia and tanks with a capacity equal to or greater than 39,890 gallons which store a VOL with a maximum true vapor pressure of less than 0.5 psia are no longer subject to Subpart Kb as of October 15, 2003. The vessels in EUGs 7, 12, 16, 17, 22, and 24 are subject to Subpart Kb.

Subpart XX (Bulk Gasoline Terminals) affects loading racks at bulk gasoline terminals which deliver liquid product into gasoline tank trucks and that commenced construction or modification after December 17, 1980. Subpart XX affects the total of all the loading racks at a bulk gasoline terminal. "Loading rack" is defined as "the loading arms, pumps, meters, shutoff valves, relief valves, and other piping and valves necessary to fill delivery tanks trucks." The loading terminal was modified in 1986 by the addition of a loading rack. New vapor processing systems are limited to 35 mg of VOC per liter of gasoline loaded. The loading system and all tank trucks are required to be vapor-tight. Initial testing of valves, piping, meters, etc. is required to use Method 21 (10,000 ppm VOC leak threshold), but after initial testing, monthly inspection of potential leak components is acceptable. Subpart XX affected the product loading terminal, EUG-20, but with the overlap provisions of MACT Subpart CC, the product loading terminal is subject only to MACT Subpart CC.

<u>Subpart GGG</u> (Equipment Leaks of VOC in Petroleum Refineries) affects each valve, pump, pressure relief device, sampling connection system, open-ended valve or line, and flange or other connector in VOC service at a process unit which commenced construction or modification after January 4, 1983, but before November 7, 2006, and which is located at a petroleum refinery. Subpart GGG affects the CCR Platformer (EU-3734A&B), the Alkylation Unit (EU-3735A&B), the Hydrocracker (EU-3725A), Bulk Terminal (EU3706A), FCCU (EU-3722A), No. 1 Crude Unit (EU-3732A&B), No. 2 Crude/Vac Units (EU-3733A), LPG (EU-3707), RFG (EU-3727), Asphalt (EU-3732 B&C), and Amine Unit (EU-3740C). Under the overlap provisions of MACT Subpart CC, equipment subject to Subpart GGG must comply only with Subpart CC.

Subpart GGGa (Equipment Leaks of VOC in Petroleum Refineries) affects each valve, pump, pressure relief device, sampling connection system, open-ended valve or line, and flange or other connector in VOC service at a process unit, which commenced construction or modification after November 7, 2006, and which is located at a petroleum refinery. This subpart defines "process unit" as "components assembled to produce intermediate or final products from petroleum, unfinished petroleum derivatives, or other intermediates: a process unit can operate independently if supplied with sufficient feed or raw materials and sufficient storage facilities for the product." Subpart GGGa requires the leak detection, repair, and documentation procedures of NSPS, Subpart VVa. All affected equipment which commenced construction or modification after November 7, 2006, in VOC service is subject to this subpart. All applicable requirements have been incorporated into the permit for the GHDS Unit, the Diesel Hydrotreater (EU-3736A), the Benfree Unit, and the ROSE unit.

<u>Subpart QQQ</u> (VOC Emission from Petroleum Refinery Wastewater Systems) applies to individual drain systems, oil-water separators, and aggregate facilities located in a petroleum refinery and which commenced construction, modification, or reconstruction after May 4, 1987. Drains are required to be equipped with water seal controls. Junction boxes are required to be equipped with a cover and may have an open vent pipe. Sewer lines shall not be open to the atmosphere and shall be covered or enclosed in a manner so as to have no visual gaps or cracks in joints, seals, or other emission interfaces. Oil-water wastewater separators shall be equipped with a fixed roof which meets the required specifications. Subpart QQQ affected the equipment in EUGs 21, 57, 59, 60, 61, and 64, but with the overlap provisions of MACT Subpart CC, only Subpart CC is applicable.

<u>Subpart IIII</u> (Stationary Compression Ignition Internal Combustion Engines) affects stationary compression ignition (CI) internal combustion engines (ICE) based on power and displacement ratings, depending on date of construction, beginning with those manufactured after April 1, 2006. The engines in EUG-48 are subject to this subpart and are manufacturer certified.

NESHAP, 40 CFR Part 61

[Applicable]

<u>Subpart J</u> (Equipment Leaks (Fugitive Emissions Sources) of Benzene) affects process streams which are 10% by weight or more benzene. One process stream from the No. 2 Splitter is expected to contain 10-30% benzene. However, 40 CFR § 63.640(p) states that any equipment subject to both Subpart J and Part 63, Subpart CC, is required only to comply with Subpart CC. The modified equipment is already subject to the MACT and will remain so.

<u>Subpart FF</u> (Benzene-contaminated Waste Operations) affects wastewater treatment systems at petroleum refineries where benzene content of wastewaters exceed 1.0 metric ton per year. Those refineries whose benzene content is between 1.0 and 10.0 metric tons per year are required only to analyze the wastewaters for the presence of benzene to demonstrate that the amount of benzene in wastewater at the refinery is less than 10.0 TPY. The most recent analysis of benzene content in the wastewater streams shows a benzene content of less than 10 metric tons.

NESHAP, 40 CFR Part 63 [Subparts CC, WW, UUU, ZZZZ, DDDDD, and LLLLL Applicable] <u>Subpart CC</u> (Petroleum Refineries) affects process vents (except FCCUs and catalyst regenerators) with HAP concentrations exceeding 20 ppm, storage vessels, wastewater streams and treatment, equipment leaks, gasoline loading racks, marine vessel loading system, storage vessels and equipment leaks associated with pipeline breakout stations, heat exchange systems, decoking operations, and flares. Of the affected equipment, storage tanks, equipment leaks, process vents, wastewater streams and treatment, and a gasoline loading rack are present at this refinery.

Storage tanks: existing storage tanks with HAP concentrations above 4% and which have vapor pressures above 1.5 psia are required to and comply with Subpart WW. The tanks in EUGs 8, 9, 11, 12, 13, 14, 16, and 17 are all subject to MACT requirements. Under the overlap provisions of Subpart CC, tanks which are subject to NSPS Subpart Kb shall comply with that subpart except as provided in § 63.640(n)(8).

<u>Process Vents:</u> any refinery unit process vent with greater than 20 ppm HAPs and which emit more than 33 kg/day VOC are subject to control requirements. Subpart CC requires affected vents to be equipped with 98% efficient controls, vented to a flare, be vented to a combustion unit firebox, or reduced to 20 ppm HAP or less. All affected process vents have been vented to the refinery flare system or fuel gas system.

Equipment Leaks: these standards affect valves, flanges, pumps, and compressors except for compressors in hydrogen service. Process streams with 5% or more HAPs are required to comply. Subpart CC provides a phased schedule of compliance with standards. Phase III standards are in effect following February 18, 2001. Under the overlap provisions of Subpart CC, equipment which is subject to NSPS Subpart GGGa shall comply with that subpart as specified in § 63.640(p)(2), but equipment subject to Subpart GGG is subject to MACT Subpart CC.

Gasoline Loading Terminal: Subpart CC states that the requirements of Subpart R are applicable but with the August 18, 1998, compliance deadline. Subpart R limits total VOC emissions to 10 mg per liter gasoline loaded, requires monitoring on meters, arms, and other components which may leak, and requires that tank trucks loaded be vapor-tight. The facility has a vapor combustor to comply with these standards.

<u>Wastewater Streams and Treatment:</u> Subpart CC requires refineries whose benzene content in wastewater is between 1 and 10 metric tons per year to monitor benzene content. (Subpart CC repeats standards for 40 CFR Part 61 Subpart FF for benzene-contaminated wastewater systems).

<u>Cooling Towers:</u> Specifications for "Heat exchange system" have been added as 40 CFR § 63.654. A facility is exempt from these standards if a cooling tower operates with a pressure difference of at least 5 psia between the cooling water side and process side, or employ an intervening cooling fluid which is less than 5% organic HAPs. Otherwise, the operator must perform monitoring to identify leaks and repair those leaks. There are separate standards for closed-loop systems and once-through systems. The existing towers are subject to these standards.

<u>Flares:</u> requirements for "flare control devices" are in § 63.670. Flares are required to be operated with a pilot flame and monitoring of the pilot flame. Visible emissions are not allowed except for 5 minutes in any 2 consecutive hours. Flare tip velocity is limited based on heating value of gases flared.

<u>Decoking Operations:</u> requirements for "delayed coking unit decoking operations" are in § 63.657. Coking units must be depressured to a control device until the vessel pressure is 2.0 psig or less, and operating pressures during depressurization must be monitored.

<u>Subpart WW</u> (Storage Vessels (Tanks) Control Level 2. The provisions of this subpart apply to the control of air emissions from storage vessels for which another subpart references the use of this subpart for such air emission control. These air emission standards for storage vessels are placed here for administrative convenience and only apply to those owners and operators of facilities subject to a referencing subpart. The provisions of subpart A (General Provisions) of this part do not apply to this subpart except as noted in the referencing subpart.

Subpart UUU (Petroleum Refineries Catalytic Cracking, Catalytic Reforming, and Sulfur Plant Units) was promulgated on April 11, 2002. The compliance date for this regulation was April 11, 2005. The SRU, CCR regenerator vent and FCCU catalyst regenerator are subject to these standards. The CCR is required to achieve either 98% control of organic HAPs or 20-ppm corrected to 3% oxygen. The FCCU is required to limit metal HAP emissions by limiting PM emissions to 2.0 lb-PM per ton coke burn-off in the catalyst regenerator. The FCCU is required to limit organic HAP emissions by limiting CO emissions from the catalyst regenerator to 500 ppmv. The FCCU is subject to NSPS, Subpart J, therefore the CO limits (500 ppmv, dry basis) and PM limits (2.0 lb PM per ton of coke burn-off) of NSPS, Subpart J apply. The SRU is limited to 250 ppm SO₂ corrected to 0% oxygen.

Subpart ZZZZ (Reciprocating Internal Combustion Engines (RICE)) previously affected only RICE with a site rating greater than 500 brake horsepower that were located at a major source of HAP emissions. On January 18, 2008, the EPA published a final rule that promulgates standards for new and reconstructed engines (after June 12, 2006) with a site-rating less than or equal to 500 HP located at major sources, and new and reconstructed engines (after June 12, 2006) located at area sources. Owners and operators of new or reconstructed engines (after June 12, 2006) at area sources, and new or reconstructed engines with a site-rating equal to or less than 500 HP located at a major source (except new or reconstructed 4-stroke lean-burn engines with a site-rating greater than or equal to 250 HP and less than or equal to 500 HP located at a major source) must meet the requirements of Subpart ZZZZ by complying with either 40 CFR Part 60 Subpart IIII (for CI engines), or 40 CFR Part 60 Subpart JJJJ (for SI engines). Owners and operators of new or reconstructed 4SLB engines with a site-rating greater than or equal to 250 HP and less than or equal to 500 HP located at a major source are subject to the same MACT standards previously established for 4SLB engines above 500 HP at a major source, and must also meet the requirements of 40 CFR Part 60 Subpart IIII, except for the emission standards for CO.

For each	You must meet the following requirement, except during periods of startup	During periods of startup you must
1. Emergency stationary CI RICE and black start stationary CI RICE	hours of operation or annually, whichever comes first, and replace as necessary;	Minimize the engine's time spent at idle and minimize the engine's startup time at startup to a period needed for appropriate and safe loading of the engine, not to exceed 30 minutes, after which time the non-startup emission limitations apply.

<u>Subpart DDDD</u> (Industrial, Commercial and Institutional Boilers and Process Heaters at major sources of HAPs) requires "new" gas-fired units in the Hydrogen Plant, GHDS Unit, and Benfree Unit and the FCCU Boiler to conduct periodic annual tune-ups.

Most of the affected sources at the facility are considered existing units designed to burn gas 1 fuels. *Unit(s) designed to burn gas 1 subcategory* includes any boiler or process heater that burns only natural gas, refinery gas, and/or other gas 1 fuels. Boilers and process heaters in the units designed to burn gas 1 fuels subcategory must conduct tune-ups as a work practice for all regulated emissions under Subpart DDDDD as indicated:

Heat Input Capacity	Tune-up
≤ 5 MMBTUH	Every 5 years
> 5 MMBTUH < 10 MMBTUH	Every 2 years
> 10 MMBTUH Without O ₂ Trim System	Annually
> 10 MMBTUH With O ₂ Trim System	Every 5 years
Limited Use	Every 5 years

Boilers and process heaters in the units designed to burn gas 1 fuels subcategory are not subject to the emission limits in Tables 1 and 2 or 11 through 13 of Subpart DDDDD, or the operating limits in Table 4 of Subpart DDDDD. All applicable requirements have been incorporated into the permit.

<u>Subpart LLLLL</u> (Asphalt Processing and Asphalt Roofing Manufacturing) affects asphalt blowstills and Group 1 storage vessels, which are defined as those vessels which are larger than 47,000 gallons and store asphalt at a temperature greater than 500°F or have a maximum true vapor pressure greater than 1.5 psia. Subpart LLLLL requires affected facilities to reduce total hydrocarbons by 95%, or to route emissions to a 99.5% efficient combustion device, or to route emissions to a combustion device which does not use auxiliary fuel and which achieves hydrocarbon destruction of 95.8%, or to route emissions to a process heater or boiler with a heat input capacity of 44 MW or greater, or to route emissions to a flare. The storage tanks in EUG 2, 4, and 15 are regulated as "Group 2" storage vessels under Subpart LLLLL since they store asphalt and their storage temperature is less than 500°F.

Compliance Assurance Monitoring, 40 CFR Part 64 [Applicable] Compliance Assurance Monitoring, as published in the Federal Register on October 22, 1997, applies to any pollutant specific emission unit at a major source that is required to obtain a Title V permit, if it meets all the following criteria:

- It is subject to an emission limit or standard for an applicable regulated air pollutant.
- It uses a control device to achieve compliance with the applicable emission limit or standard.
- It has potential emissions, prior to the control device, of the applicable regulated air pollutant of 100 TPY.

Most units which utilize "active" control devices are also subject to MACTs: the FCCU, the SRU, and the asphalt blowstill. (Floating roofs on tanks are not "active" controls, and most tanks with floating roofs are also subject to MACT requirements.) This leaves only the refinery fuel gas amine unit which controls the sulfur content of refinery fuel gas, however, the fuel sulfur content is also required to be monitored under NSPS Subpart J and Ja. Fuel sulfur monitoring as conducted for Subparts J/Ja is acceptable as CAM for combustion units using refinery fuel gas.

Chemical Accident Prevention Provisions, 40 CFR Part 68 [Applicable] Toxic and flammable substances subject to this regulation are present in the facility in quantities greater than the threshold quantities. A Risk Management Plan has been submitted and has been updated as required by the EPA. More information on this federal program is available on the web page: www.epa.gov.rmp.

Stratospheric Ozone Protection, 40 CFR Part 82 [Subparts A and F are Applicable] These standards require phase out of Class I & II substances, reductions of emissions of Class I & II substances to the lowest achievable level in all use sectors, and banning use of nonessential products containing ozone-depleting substances (Subparts A & C); control servicing of motor vehicle air conditioners (Subpart B); require Federal agencies to adopt procurement regulations which meet phase out requirements and which maximize the substitution of safe alternatives to Class I and Class II substances (Subpart D); require warning labels on products made with or

containing Class I or II substances (Subpart E); maximize the use of recycling and recovery upon disposal (Subpart F); require producers to identify substitutes for ozone-depleting compounds under the Significant New Alternatives Program (Subpart G); and reduce the emissions of halons (Subpart H).

<u>Subpart A</u> identifies ozone-depleting substances and divides them into two classes. Class I controlled substances are divided into seven groups; the chemicals typically used by the manufacturing industry include carbon tetrachloride (Class I, Group IV) and methyl chloroform (Class I, Group V). A complete phase-out of production of Class I substances is required by January 1, 2000 (January 1, 2002, for methyl chloroform). Class II chemicals, which are hydrochlorofluorocarbons (HCFCs), are generally seen as interim substitutes for Class I CFCs. Class II substances consist of 33 HCFCs. A complete phase-out of Class II substances, scheduled in phases starting by 2002, is required by January 1, 2030.

<u>Subpart F</u> requires that any persons servicing, maintaining, or repairing appliances except for motor vehicle air conditioners; persons disposing of appliances, including motor vehicle air conditioners; refrigerant reclaimers, appliance owners, and manufacturers of appliances and recycling and recovery equipment comply with the standards for recycling and emissions reduction.

The Standard Conditions of the permit address the requirements specified at §82.156 for persons opening appliances for maintenance, service, repair, or disposal; §82.158 for equipment used during the maintenance, service, repair, or disposal of appliances; §82.161 for certification by an approved technician certification program of persons performing maintenance, service, repair, or disposal of appliances; §82.166 for recordkeeping; § 82.158 for leak repair requirements; and §82.166 for refrigerant purchase records for appliances normally containing 50 or more pounds of refrigerant.

SECTION IX. COMPLIANCE

Inspections

There are multiple Enforcement actions shown on TEAM as currently in progress.

Tier Classification and Public Review

This application has been determined to be a Tier II based on the request for a construction permit for a significant modification to a Part 70 source permit.

The applicant published the "Notice of Filing a Tier II Application" in the *Wynnewood Gazette* on May 19, 2021, a weekly newspaper of general circulation in Garvin County. The notice said that the application was available for public review at the Wynnewood Public Library, 108 N. Dean A. McGee Avenue, Wynnewood, OK, or at the AQD office. A draft of this permit will be made available for public review for a period of thirty days as stated in another newspaper announcement. The facility is located within 50 miles of the border with the state of Texas; that state will be notified of the draft permit. The "proposed" permit will be submitted to EPA for a 45-day review period. The applicant has requested concurrent public and EPA review.

The applicant has submitted an affidavit that they are not seeking a permit for land use or for any operation upon land owned by others without their knowledge. The affidavit certifies that the applicant owns the property.

Information on all permit actions is available for review by the public in the Air Quality section of the DEQ Web page: https://www.deq.ok.gov/

If the Administrator does not object in writing during the 45-day EPA review period, any person that meets the requirements of this OAC 252:100-8-8(j) may petition the Administrator within 60 days after the expiration of the Administrator's 45-day review period to make such objection. Any such petition shall be based only on objections to the permit that the petitioner raised with reasonable specificity during the public comment period provided for in 27A O.S. § 2-14-302.A.2., unless the petitioner demonstrates that it was impracticable to raise such objections within such period, or unless the grounds for such objection arose after such period. If the Administrator objects to the permit as a result of a petition filed under this OAC 252:100-8-8(j), the DEQ shall not issue the permit until EPA's objection has been resolved, except that a petition for review does not stay the effectiveness of a permit or its requirements if the permit was issued after the end of the 45-day review period and prior to an EPA objection. If the DEQ has issued a permit prior to receipt of an EPA objection under this OAC 252:100-8-8(j), the DEQ will modify, terminate, or revoke such permit, and shall do so consistent with the procedures in 40 CFR §§ 70.7(g)(4) or (5)(i) and (ii) except in unusual circumstances. If the DEQ revokes the permit, it may thereafter issue only a revised permit that satisfies EPA's objection. In any case, the source will not be in violation of the requirement to have submitted a timely and complete application.

Fee Paid

Major source construction modification permit fee is \$5,000. Applicant paid \$6,000 and the balance of 1,000 will be refunded.

SECTION X. SUMMARY

The applicant has demonstrated the ability to comply with the requirements of the applicable Air Quality rules and regulations. Ambient air quality standards are not threatened at this site. There are no active compliance or enforcement Air Quality issues that would preclude the issuance of this permit. Issuance of the permit is recommended, contingent on public and EPA review.

PERMIT TO CONSTRUCT AIR POLLUTION CONTROL FACILITY SPECIFIC CONDITIONS

Wynnewood Refining Company, LLC Wynnewood Refinery

Permit No. 2017-0042-C (M-10)

The permittee is authorized to operate in conformity with the specifications submitted to Air Quality on May 13, 2021. The Evaluation Memorandum dated July 6, 2021, explains the derivation of applicable permit requirements and estimates of emissions; however, it does not contain limitations or permit requirements. Commencing construction or continuing operations under this permit constitutes acceptance of, and consent to the conditions contained herein:

1. Emissions limitations and operational requirements:

[OAC 252:100-8-6(a)(1)]

<u>EUG 1 – Cone Roof Tanks, Subject to 40 CFR Part 63 Subpart CC (Group 2 Storage Vessels)</u> The following emissions units are "grandfathered" (constructed prior to any applicable rule) and are limited to the existing equipment as it is.

EU	Point	Normal Contents	Normal Contents Capacity	
P-T108	P-T108	Jet kerosene	13,800 bbl.	1945
P-T111	P-T111	Jet kerosene	5,000 bbl.	1945
P-T162	P-T162	JP-8 additive	1,000 bbl.	1954
P-T252	P-T252	Slurry oil	26,800 bbl.	1945
P-T253	P-T253	High-sulfur diesel	25,000 bbl.	1957
P-T256	P-T256	Jet kerosene	5,000 bbl.	1957
P-T260	P-T260	Slurry oil	5,100 bbl.	1957
P-T262	P-T262	Gas oil	5,100 bbl.	1959
P-T263	P-T263	Slop oil / Asphalt	5,100 bbl.	1959
P-T1441	P-T1441	Jet kerosene	34,800 bbl.	6/72
P-T269	P-T269	Biodiesel	5,100 bbl.	1961

A. The above emissions units are limited to process changes which will not cause the tank to become defined as a "Group 1 storage vessel." [40 CFR §63.640(l)(2)(ii)]

<u>EUG 2 – Cone Roof Tanks, Subject to 40 CFR Part 63, Subpart LLLLL (Group 2 Asphalt Storage Tanks)</u> The following emissions units are limited to the existing equipment as it is.

EU	Point	Normal Contents	Capacity	Installed Date
P-T101	P-T101	Asphalt	64,000 bbl.	1945
P-T107	P-T107	Asphalt	78,000 bbl.	1945
P-T120	P-T120	Asphalt	2,800 bbl.	1945
P-T265	P-T265	Asphalt	5,100 bbl.	1959

- A. The above emissions units are subject to and shall comply with the requirements of 40 CFR Part 63, Subpart LLLLL, including but not limited to: [40 CFR §§63.8680-8696]
 - 1. §63.8680 What is the purpose of this subpart?
 - 2. §63.8681 Am I subject to this subpart? (a)-(f)
 - 3. §63.8682 What parts of my plant does this subpart cover? (a)-(e)
 - 4. §63.8683 When must I comply with this subpart? (b) & (d)
 - 5. §63.8684 What emission limitations must I meet? (a)
 - 6. §63.8685 What are my general requirements for complying with this subpart? (a)-(d)
 - 7. §63.8686 By what date must I conduct performance tests or other initial compliance demonstrations? (a) & (b)
 - 8. §63.8687 What performance tests, design evaluations, and other procedures must I used? (a)-(c)
 - 9. §63.8688 What are my monitoring installation, operation, and maintenance requirements?
 - 10. §63.8689 How do I demonstrate initial compliance with the emission limitations? (a)-(c)
 - 11. §63.8692 What notifications must I submit and when? (a)-(f)
 - 12. §63.8693 What reports must I submit and when? (a)-(f)
 - 13. §63.8694 What records must I keep? (a) & (b)
 - 14. §63.8695 In what form and how long must I keep my records? (a)-(c)
 - 15. §63.8680 What parts of the general provisions apply to me?
- B. The maximum asphalt storage temperature for tanks in this EUG must remain below 500 °F for the tanks to be defined as Group 2 Asphalt Storage Tanks. If the maximum storage temperature exceeds 500 °F, the maximum true vapor pressure of the asphalt must remain below 1.5 psia for the tanks to be defined as Group 2 Asphalt Storage tanks.

[40 CFR §63.8698]

C. Exhaust gases from the tanks in this EUG are limited to 0 percent opacity. This opacity limit may be exceeded for one consecutive 15-minute period in any 24-hour period when the storage tank transfer lines are being cleared. [40 CFR §63.8684(a)]

<u>EUG 3 – Cone Roof Tanks, Constructed 6/12/73 to 5/18/78 (NSPS Subpart K), Subject to 40</u> CFR Part 63 Subpart CC (Group 2 Storage Vessels)

				Maximum	V(OC
EU	Point	Normal Contents	Maximum True Vapor Pressure, psia	Annual Throughput, bbl. (12-Month Rolling Total)	lb/hr	TPY
P-T126	P-T126	FCCU charge	0.3	3,650,000	39.83	87.22
P-T202	P-T202	FCCU charge	0.4	3,650,000	41.74	91.41
P-T1323	P-T1323	Asphalt	1.5	120,000	11.26	24.66

- A. The above emissions units are subject to and shall comply with the requirements of 40 CFR Part 63, Subpart CC, including but not limited to: [40 CFR §§63.640-671]
 - 1. The permittee shall comply with all applicable operational monitoring requirements: keeping records of the dimensions and capacities of the tanks, the petroleum liquid stored, the period of storage, and the maximum true vapor pressure of the liquid during the storage period. [40 CFR §63.655(i)(1)(vi)]
- B. The permittee shall keep monthly records of throughput of each of the above tanks.

[OAC 252:100-43]

<u>EUG 4 – Cone Roof Tanks, Subject to 40 CFR Part 63, Subpart LLLLL; 40 CFR Part 63, Subpart CC (Group 2 Storage Tanks); 40 CFR Part 60, Subpart QQQ</u>

EU	Point	Normal Contents	Capacity	Installed Date
P-T136	P-T136	Asphalt, Diesel, Wastewater	80,000 bbl.	1957
P-T134	P-T134	Asphalt, Diesel, Wastewater	80,000 bbl.	1954

- A. The above tanks are limited to process changes which will not cause a tank to become defined as a MACT CC "Group 1 storage vessel." [40 CFR §63.640(1)(2)(ii]
- B. The above emissions units are subject to and shall comply with the requirements of 40 CFR Part 63, Subpart LLLLL including but not limited to: [40 CFR §§63.8680-8696]
 - 1. §63.8680 What is the purpose of this subpart?
 - 2. §63.8681 Am I subject to this subpart? (a)-(f)
 - 3. §63.8682 What parts of my plant does this subpart cover? (a)-(e)
 - 4. §63.8683 When must I comply with this subpart? (b) & (d)
 - 5. §63.8684 What emission limitations must I meet? (a)
 - 6. §63.8685 What are my general requirements for complying with this subpart? (a)-(d)
 - 7. §63.8686 By what date must I conduct performance tests or other initial compliance demonstrations? (a) & (b)
 - 8. §63.8687 What performance tests, design evaluations, and other procedures must I used? (a)-(c)
 - 9. §63.8688 What are my monitoring installation, operation, and maintenance requirements?
 - 10. §63.8689 How do I demonstrate initial compliance with the emission limitations? (a)-(c)
 - 11. §63.8692 What notifications must I submit and when? (a)-(f)

SPECIFIC CONDITIONS 2017-0042-C (M-10)

- 12. §63.8693 What reports must I submit and when? (a)-(f)
- 13. §63.8694 What records must I keep? (a) & (b)
- 14. §63.8695 In what form and how long must I keep my records? (a)-(c)
- 15. §63.8680 What parts of the general provisions apply to me?
- C. The maximum asphalt storage temperature for tanks in this EUG must remain below 500°F for the tanks to be defined as Group 2 Asphalt Storage Tanks. If the maximum storage temperature exceeds 500°F, the maximum true vapor pressure of the asphalt must remain below 1.5 psia for the tanks to be defined as Group 2 Asphalt Storage Tanks. [40 CFR §63.8698]
- D. Exhaust gases from the tanks in this EUG are limited to 0% opacity except for one 15-minute period in any 24-hour period when the storage tank lines are being cleared.

[40 CFR §63.8684(a)]

E. The permittee shall comply with the requirements of 40 CFR Part 63, Subpart CC, for the wastewater handling equipment within the refinery including but not limited to:

[40 CFR §§63.640-671]

- 1. §63.640 Applicability and designation of affected source.
- 2. §63.641 Definitions.
- 3. §63.642 General standards.
- 4. §63.646 Storage vessel provisions.
- 5. §63.647 Wastewater provisions.
- 6. §63.648 Equipment leak standards.
- 7. §63.652 Emissions averaging provisions.
- 8. §63.655 Reporting and recordkeeping requirements.

<u>EUG 5 – Cone Roof Tanks, Constructed 5/18/78 to 7/22/84 (NSPS Subpart Ka), Subject to 40 CFR Part 63 Subpart CC (Group 2 Storage Vessels)</u>

			Maximum	Maximum Annual	VOC	
EU	Point	Normal Contents	True Vapor Pressure,	Throughput, bbl. (12-Month Rolling	lb/hr	TPY
			psia	Total)		
P-T264	P-T264	Gas oil / asphalt	0.5	321,000	8.34	18.28
P-T601	P-T601	Asphalt resin	0.5	525,000	8.07	17.68
P-T1321	P-T1321	Asphalt	1.5	120,000	11.02	24.14

- A. The above emissions units are subject to and shall comply with 40 CFR Part 63, Subpart CC including but not limited to: [40 CFR §§63.640-671]
 - 1. The permittee shall comply with all applicable operational monitoring requirements: keeping records of the petroleum liquid stored, the period of storage, and the maximum true vapor pressure of the liquid during the storage period.

[40 CFR §63.655(i)(1)(vi)]

B. The permittee shall keep monthly records of throughput of each of the above tanks.

[OAC 252:100-43]

<u>EUG 7 – Cone Roof Tanks, Constructed after 7/23/84 (NSPS Subpart Kb), Subject to 40 CFR Part 63 Subpart CC (Group 2 Storage Vessels)</u>

		Point Normal Contents		Maximum Annual	VC	OC
EU	Point			Throughput, bbl.		
EU	1 OIIIt	Normal Contents	Pressure,	(12-Month Rolling	lb/hr	TPY
			psia	Total)		
P-T1474	P-T1474	Diesel additive	2.0	11,900	0.73	1.61
P-T1475	P-T1475	High-sulfur diesel	0.5	2,500,000	1	0.74
P-T200	P-T200	Diesel	0.5	5,100,000	1	1.70

A. The above emissions units are subject to and shall comply with 40 CFR Part 63, Subpart CC including but not limited to all applicable operational monitoring requirements:

[40 CFR §§63.640-671]

- 1. Keeping records of the petroleum liquid stored, the period of storage, and the maximum true vapor pressure of the liquid during the storage period. [40 CFR §63.655(i)(1)(vi)]
- 2. Keeping records of the dimensions and capacity of the vessels.

[40 CFR §63.655(i)(1)(vi)]

B. The permittee shall keep monthly records of throughput of each of the above tanks.

[OAC 252:100-43]

EUG 8 - Internal Floating Roof Tanks, Subject to NSPS Subpart K, Subject to 40 CFR Part 63 Subpart CC (Group 1 Storage Vessels), and 40 CFR Part 63, Subpart WW

			Maximum	Maximum	VO	C
EU	Point	Normal Contents	True Vapor Pressure, psia	Annual Throughput, bbl. (12-Month Rolling Total)	lb/hr	ТРҮ
P-T67	P-T67	Crude oil	11.0	9,855,000	3.83	8.38
P-T68	P-T68	Crude oil	11.0	9,855,000	3.83	8.38
P-T69	P-T69	Crude oil	11.0	9,855,000	3.83	8.38

- A. The permittee shall comply with 40 CFR Part 63, Subpart CC for the storage vessels in this EUG including but not limited to: [40 CFR §§63.640-671]
 - 1. § 63.642 General Standards
 - 2. § 63.646 Storage Vessel Provisions
 - 3. § 63.655 Reporting and Recordkeeping Requirements
 - 4. § 63.660 Storage Vessel Provisions
- B. The requirements in 40 CFR §63.660 and 40 CFR Part 63, Subpart WW (as referenced by 40 CFR §63.660) apply to the tanks in this EUG. (The compliance date for 40 CFR §63.660 was extended in an extension request response letter from the ODEQ to WRC dated March 16, 2016). These requirements include but are not limited to the following:

[40 CFR §63.660 & 40 CFR Part 63, Subpart WW]

1. An IFR shall be equipped with one of the seal configurations listed.

[40 CFR §63.1063(a)(1)(i)]

- a. A liquid-mounted seal.
- b. A mechanical shoe seal.
- c. Two seals mounted one above the other. The lower seal may be vapor-mounted.
- 2. Openings through the deck of the floating roof shall be equipped as described:

[40 CFR §63.1063(a)(2)]

- a. Each opening except those for automatic bleeder vents (vacuum breaker vents) and rim space vents shall have its lower edge below the surface of the stored liquid.
- b. Each opening except those for automatic bleeder vents (vacuum breaker vents), rim space vents, leg sleeves, and deck drains shall be equipped with a deck cover. The deck cover shall be equipped with a gasket between the cover and the deck.
- c. Each automatic bleeder vent (vacuum breaker vent) and rim space vent shall be equipped with a gasketed lid, pallet, flapper, or other closure device.
- d. Each opening for a fixed roof support column may be equipped with a flexible fabric sleeve seal instead of a deck cover.
- e. Each opening for a sample well or deck drain (that empties into the stored liquid) may be equipped with a slit fabric seal or similar device that covers at least 90 percent of the opening, instead of a deck cover.
- f. Each cover on access hatches and gauge float wells shall be designed to be bolted or fastened when closed.
- g. Each opening for an unslotted guidepole shall be equipped with a pole wiper, and each unslotted guidepole shall be equipped with a gasketed cap on the top of the guidepole.
- h. Each opening for a slotted guidepole shall be equipped with one of the control device configurations specified in paragraphs (a)(2)(viii)(A) and (a)(2)(viii)(B) of \$63.1063.
- 3. The tank's internal floating roof shall be floating on the stored liquid surface at all times except when the floating roof must be supported by the leg supports or other support devices. When the storage vessel is storing liquid, but the liquid depth is insufficient to float the floating roof, the process of filling to the point of refloating the floating roof shall be continuous and shall be performed as soon as practicable.

[40 CFR §63.1063(b)(1)&(2)]

- 4. Each cover over an opening in the floating roof, except for automatic bleeder vents (vacuum breaker vents) and rim space vents, shall be closed at all times, except when the cover must be opened for access. [40 CFR §63.1063(b)(3)]
- 5. Each automatic bleeder vent (vacuum breaker vents) and rim space vent must be closed all times, except when the vent is required to be opened to relieve excess pressure or vacuum, in accordance with the tank manufacturer's design. [40 CFR §63.1063(b)(4)]
- 6. Each unslotted guidepole cap must be closed at all times except when gauging the liquid level or taking liquid samples. [40 CFR §63.1063(b)(5)]
- 7. Tank inspections must be performed using the procedures prescribed in 40 CFR 63.1063(c)(1)(i) or (c)(1)(ii). [40 CFR 63.1063(c)(1)]
- 8. Conditions causing tank inspection failures must be repaired as specified in 40 CFR §63.1063(e)(1) or (e)(2). [40 CFR §63.1063(e)]
- 9. Records of storage vessel dimensions, capacity, and an identification of the liquid stored in the vessel must be kept for as long as liquid is stored in the tank [40 CFR §63.1065(a)]

10. Records of floating roof inspection results must be kept as specified in 40 CFR §63.1065(b)(1) and (b)(2). Documentation of any repair extensions must be kept.

[40 CFR §63.1065(b)&(d)]

- 11. Records of dates when a floating roof is set on its legs or other support devices, dates when the roof was refloated, and records indicating whether the process of refloating was continuous must be kept.

 [40 CFR §63.1065(c)]
- 12. Records required under 40 CFR §63.660 shall be retained for the length of time described in 40 CFR §63.1065 and must be kept in such a manner that they can readily be accessed within 24 hours. [40 CFR §63.1065]
- 13. Notifications of start-up and inspections shall be submitted. Reports of inspection failures shall be submitted when failures occur. [40 CFR §1066(a) and (b)]
- C. Upon demonstration of compliance with the standards in 40 CFR §63.660, the control requirements in 40 CFR §63.646 no longer apply. [40 CFR §863.646 & 660]
- D. The permittee shall keep records of the petroleum liquid stored, the period of storage, and the maximum true vapor pressure of the liquid during the storage period, and monthly records of throughput of each of the above tanks.
 [OAC 252:100-43]

EUG 9 – Internal Floating Roof Tanks Constructed Prior to 6/12/73, Subject to 40 CFR Part 63 Subpart CC (Group 1 Storage Vessels) and Subpart WW

The following emissions units are limited to the existing equipment as it is.

EU	Point	Normal Contents	Capacity	Installed Date
P-T146	P-T146	Premium unleaded gasoline	80,000 bbl.	1952
P-T1471	P-T1471	Premium unleaded gasoline	34,800 bbl.	6/73
P-T257	P-T257	Unifined naphtha	10,000 bbl.	1957

- A. The permittee shall comply with 40 CFR Part 63, Subpart CC for the storage vessels in this EUG including but not limited to: [40 CFR §§63.640-671]
 - 1. § 63.642 General Standards
 - 2. § 63.646 Storage Vessel Provisions
 - 3. § 63.655 Reporting and Recordkeeping Requirements
 - 4. § 63.660 Storage Vessel Provisions
- B. The tanks in this EUG shall comply with the requirements in 40 CFR §63.660 and 40 CFR Part 63, Subpart WW (as referenced by 40 CFR §63.660). (The compliance date for 40 CFR §63.660 was extended in an extension request response letter from the ODEQ to WRC dated March 16, 2016). These requirements include but are not limited to the following:

[40 CFR §63.660 & 40 CFR Part 63, Subpart WW]

1. An IFR shall be equipped with one of the seal configurations listed.

[40 CFR §63.1063(a)(1)(i)]

- a. A liquid-mounted seal.
- b. A mechanical shoe seal.
- c. Two seals mounted one above the other. The lower seal may be vapor-mounted.
- 2. Openings through the deck of the floating roof shall be equipped as described:

[40 CFR §63.1063(a)(2)]

a. Each opening except those for automatic bleeder vents (vacuum breaker vents) and rim space vents shall have its lower edge below the surface of the stored liquid.

- b. Each opening except those for automatic bleeder vents (vacuum breaker vents), rim space vents, leg sleeves, and deck drains shall be equipped with a deck cover. The deck cover shall be equipped with a gasket between the cover and the deck.
- c. Each automatic bleeder vent (vacuum breaker vent) and rim space vent shall be equipped with a gasketed lid, pallet, flapper, or other closure device.
- d. Each opening for a fixed roof support column may be equipped with a flexible fabric sleeve seal instead of a deck cover.
- e. Each opening for a sample well or deck drain (that empties into the stored liquid) may be equipped with a slit fabric seal or similar device that covers at least 90 percent of the opening, instead of a deck cover.
- f. Each cover on access hatches and gauge float wells shall be designed to be bolted or fastened when closed.
- g. Each opening for an unslotted guidepole shall be equipped with a pole wiper, and each unslotted guidepole shall be equipped with a gasketed cap on the top of the guidepole.
- h. Each opening for a slotted guidepole shall be equipped with one of the control device configurations specified in paragraphs (a)(2)(viii)(A) and (a)(2)(viii)(B) of §63.1063.
- 3. The tank's internal floating roof shall be floating on the stored liquid surface at all times except when the floating roof must be supported by the leg supports or other support devices. When the storage vessel is storing liquid, but the liquid depth is insufficient to float the floating roof, the process of filling to the point of refloating the floating roof shall be continuous and shall be performed as soon as practicable.

[40 CFR §63.1063(b)(1)&(2)]

- 4. Each cover over an opening in the floating roof, except for automatic bleeder vents (vacuum breaker vents) and rim space vents, shall be closed at all times, except when the cover must be opened for access.

 [40 CFR §63.1063(b)(3)]
- 5. Each automatic bleeder vent (vacuum breaker vents) and rim space vent must be closed all times, except when the vent is required to be opened to relieve excess pressure or vacuum, in accordance with the tank manufacturer's design. [40 CFR §63.1063(b)(4)]
- 6. Each unslotted guidepole cap must be closed at all times except when gauging the liquid level or taking liquid samples. [40 CFR §63.1063(b)(5)]
- 7. Tank inspections must be performed using the procedures prescribed in 40 CFR §63.1063(c)(1)(i) or (c)(1)(ii). [40 CFR §63.1063(c)(1)]
- 8. Conditions causing tank inspection failures must be repaired as specified in 40 CFR §63.1063(e)(1) or (e)(2). [40 CFR §63.1063(e)]
- 9. Records of storage vessel dimensions, capacity, and an identification of the liquid stored in the vessel must be kept for as long as liquid is stored in the tank

[40 CFR §63.1065(a)]

10. Records of storage vessel dimensions, capacity, and an identification of the liquid stored in the vessel must be kept for as long as liquid is stored in the tank.

[40 CFR §63.1065(a)]

- 11. Records of dates when a floating roof is set on its legs or other support devices, dates when the roof was refloated, and records indicating whether the process of refloating was continuous must be kept.

 [40 CFR §63.1065(c)]
- 12. Records required under 40 CFR §63.660 shall be retained for the length of time described in 40 CFR §63.1065 and must be kept in such a manner that they can readily be accessed within 24 hours. [40 CFR §63.1065]

SPECIFIC CONDITIONS 2017-0042-C (M-10)

- 13. Notifications of start-up and inspections shall be submitted. Reports of inspection failures shall be submitted when failures occur. [40 CFR §1066(a) and (b)]
- C. Upon demonstration of compliance with the standards in 40 CFR §63.660, the control requirements in 40 CFR §63.646 no longer apply. [40 CFR §83.646 & 660]
- D. The permittee shall keep records of the petroleum liquid stored, the period of storage, and the maximum true vapor pressure of the liquid during the storage period, and monthly records of throughput of each of the above tanks.

 [OAC 252:100-43]

<u>EUG 10 - Internal Floating Roof Tanks, Subject to NSPS Subpart K, Subject to 40 CFR Part 63 Subpart CC (Group 2 Storage Vessels)</u>

Ī				Maximum	Maximum Annual	VC	OC
	EU	Point	Normal Contents	True Vapor	Throughput, bbl.		
	EU	I OIIIt	Normal Contents	Pressure,	(12-Month Rolling	lb/hr	TPY
				psia	Total)		
L				Pola	1000)		

- A. The permittee shall comply with 40 CFR Part 60, Subpart K for the storage vessel in this EUG including but not limited to: [40 CFR §§ 60.110-113]
 - 1. The vessel shall be equipped with a floating roof [40 CFR §60.112(a)(1)]
 - 2. The permittee shall comply with all applicable operational monitoring requirements: keep records of the petroleum liquid stored, the period of storage, and the maximum true vapor pressure of the liquid during the storage period. [40 CFR §60.113(a)]
- B. The permittee shall keep monthly records of throughput of each of the above tanks.

[OAC 252:100-43]

<u>EUG 11 – External Floating Roof Tanks, Constructed Prior to 6/12/73, Subject to 40 CFR</u> Part 63 Subpart CC (Group 1 Storage Vessels) and Subpart WW

EU	Point	Normal Contents	Capacity	Installed Date
P-T142	P-T142	Unleaded gasoline	55,000 bbl.	1954
P-T143	P-T143	Unleaded gasoline	55,000 bbl.	1957
P-T144	P-T144	Premium unleaded gasoline	55,000 bbl.	1954
P-T147	P-T147	FCCU gasoline	80,000 bbl.	1952
P-T150	P-T150	Platformate	24,800 bbl.	1952
P-T152	P-T152	Platformate	24,800 bbl.	1952
P-T154	P-T154	Heavy unicrackate	24,800 bbl.	1952
P-T164	P-T164	Light unicrackate \ light reformate	10,000 bbl.	1951
P-T168	P-T168	Alkylate	35,700 bbl.	1959
P-T250	P-T250	Jet fuel	10,000 bbl.	1958
P-T251	P-T251	Mineral spirits	10,000 bbl.	1957
P-T254	P-T254	Unleaded gasoline	24,800 bbl.	1958
P-T255	P-T255	BenFree combo	24,800 bbl.	1954
P-T1470	P-T1470	Unleaded gasoline	79,600 bbl.	1972

- A. The permittee shall comply with the requirements of 40 CFR Part 63, Subpart CC for the storage vessels in this EUG including but not limited to: [40 CFR §§ 63.640-671]
 - 1. § 63.642 General Standards
 - 2. § 63.646 Storage Vessel Provisions
 - 3. § 63.655 Reporting and Recordkeeping Requirements
 - 4. § 63.660 Storage Vessel Provisions
- B. The tanks in this EUG shall comply with the requirements in 40 CFR §63.660 and 40 CFR Part 63, Subpart WW (as referenced by 40 CFR §63.660). (The compliance date for 40 CFR §63.660 was extended in an extension request response letter from the ODEQ to WRC dated March 16, 2016). These requirements include but are not limited to the following:

[40 CFR §63.660 & 40 CFR Part 63, Subpart WW]

- 1. An EFR shall be equipped with one of the seal configurations listed. [40 CFR §63.1063(a)(1)(ii)]
 - a. A liquid-mounted seal and a secondary seal.
 - b. A mechanical shoe seal and a secondary seal. The upper end of the shoe(s) shall extend a minimum of 61 centimeters (24 inches) above the stored liquid surface.
 - c. If the EFR is equipped with a liquid-mounted seal or mechanical shoe seal, or a vapor-mounted seal and secondary seal, as of the proposal date for a referencing subpart, the seal options specified in paragraphs (a)(1)(ii)(A) and (a)(1)(ii)(B) of §63.1063 do not apply until the next time the storage vessel is completely emptied and degassed, or 10 years after the promulgation date of the referencing subpart, whichever occurs first.
- 2. Openings through the deck of the floating roof shall be equipped as described:

- a. Each opening except those for automatic bleeder vents (vacuum breaker vents) and rim space vents shall have its lower edge below the surface of the stored liquid.
- b. Each opening except those for automatic bleeder vents (vacuum breaker vents), rim space vents, leg sleeves, and deck drains shall be equipped with a deck cover. The deck cover shall be equipped with a gasket between the cover and the deck.
- c. Each automatic bleeder vent (vacuum breaker vent) and rim space vent shall be equipped with a gasketed lid, pallet, flapper, or other closure device.
- d. Each opening for a fixed roof support column may be equipped with a flexible fabric sleeve seal instead of a deck cover.
- e. Each opening for a sample well or deck drain (that empties into the stored liquid) may be equipped with a slit fabric seal or similar device that covers at least 90 percent of the opening, instead of a deck cover.
- f. Each cover on access hatches and gauge float wells shall be designed to be bolted or fastened when closed.
- g. Each opening for an unslotted guidepole shall be equipped with a pole wiper, and each unslotted guidepole shall be equipped with a gasketed cap on the top of the guidepole.
- h. Each opening for a slotted guidepole shall be equipped with one of the control device configurations specified in paragraphs (a)(2)(viii)(A) and (a)(2)(viii)(B) of §63.1063.
- 3. The tank's floating roof shall be floating on the stored liquid surface at all times except when the floating roof must be supported by the leg supports or other support devices. When the storage vessel is storing liquid, but the liquid depth is insufficient to float the floating roof, the process of filling to the point of refloating the floating roof shall be continuous and shall be performed as soon as practicable. [40 CFR §63.1063(b)(1)&(2)]

- 4. Each cover over an opening in the floating roof, except for automatic bleeder vents (vacuum breaker vents) and rim space vents, shall be closed at all times, except when the cover must be opened for access.

 [40 CFR §63.1063(b)(3)]
- 5. Each automatic bleeder vent (vacuum breaker vents) and rim space vent must be closed all times, except when the vent is required to be opened to relieve excess pressure or vacuum, in accordance with the tank manufacturer's design. [40 CFR §63.1063(b)(4)]
- 6. Each unslotted guidepole cap must be closed at all times except when gauging the liquid level or taking liquid samples. [40 CFR §63.1063(b)(5)]
- 7. Tank inspections must be performed using the procedures prescribed in 40 CFR §63.1063(c)(2)(i) through (c)(2)(iv). [40 CFR §63.1063(c)(2)]
- 8. Conditions causing tank inspection failures must be repaired as specified in 40 CFR §63.1063(e)(1) or (e)(2). [40 CFR §63.1063(e)]
- 9. Records of storage vessel dimensions, capacity, and an identification of the liquid stored in the vessel must be kept for as long as liquid is stored in the tank [40 CFR §63.1065(a)]
- 10. Records of floating roof inspection results must be kept as specified in 40 CFR §63.1065(b)(1) and (b)(2). Documentation of any repair extensions must be kept.

- 11. Records of dates when a floating roof is set on its legs or other support devices, dates when the roof was refloated, and records indicating whether the process of refloating was continuous must be kept. [40 CFR §63.1065(c)]
- 12. Records required under 40 CFR §63.660 shall be retained for the length of time described in 40 CFR §63.1065 and must be kept in such a manner that they can readily be accessed within 24 hours. [40 CFR §63.1065]
- 13. Notifications of start-up and inspections shall be submitted. Reports of inspection failures shall be submitted when failures occur. [40 CFR §1066(a) and (b)]
- C. Upon demonstration of compliance with the standards in 40 CFR §63.660, the control requirements in 40 CFR §63.646 no longer apply. [40 CFR §863.646 & 660]
- D. The permittee shall keep records of the petroleum liquid stored, the period of storage, and the maximum true vapor pressure of the liquid during the storage period, and monthly records of throughput of each of the above tanks.
 [OAC 252:100-43]

<u>EUG 12 – External Floating Roof Tanks, Subject to NSPS Subpart Kb, Subject to 40 CFR</u> Part 63 Subpart CC (Group 1 Storage Vessels) and Subpart WW

			Throughput	Vapor	VC	OC
EU	Point	Normal Contents	Throughput, Barrels per 12- Month Period	Pressure Limit psia	lb/hr	TPY
P-T155	P-T155	Naphtha	511,000	11.0		4.94
P-T70	P-T70	Crude Oil	10,950,000	11.0	1	5.31
P-T148	P-T148	Gasoline	8,614,000	11.0	1	12.54
P-T140	P-T140	DHT/HC Feed	10,950,000	11.0	1	10.56
P-T138	P-T138	DHT/HC Feed	7,300,000	11.0	1	10.42
P-T203	P-T203	Gasoline/Diesel	5,739,625	11.0	-	3.82
P-T71	P-T71	Crude Oil	36,500,800	11.0		6.28
P-T110	P-T110	LCO	3,453,943	11.0		4.74

			Throughput	Vapor	VC	C
EU	Point	Normal Contents	Throughput, Barrels per 12- Month Period	Pressure Limit psia	lb/hr	TPY
P-T204	P-T204	DHT/HC Feed/Diesel	18,250,000	11.0	1	11.79

A. The external floating roofs shall be equipped with a primary liquid-mounted or mechanical shoe seal and a secondary seal. The upper end of the mechanical shoe(s) shall extend a minimum of 61 centimeters (24 inches) above the stored liquid surface.

[40 CFR § 63.1063(a)(1)(ii)(A) & (B)]

- B. Each tank with an external floating roof shall not exceed a seal gap to area ratio of 10 square inches per foot diameter for the primary seal nor 1.0 square inch per foot of diameter for the secondary seal. The secondary seal shall be inspected at least once every year and the primary seal shall be inspected at least every 5 years. [40 CFR § 63.1063(d)(2)(ii), (3)(ii), & (3)(iii)]
- C. The permittee shall keep monthly records of throughput of each of the above tanks.

[OAC 252:100-43]

- D. The permittee shall comply with the requirements of 40 CFR Part 63, Subpart CC for the storage vessels in this EUG including but not limited to: [40 CFR §§ 63.640-671]
 - 1. § 63.642 General Standard
 - 2. § 63.646 Storage Vessel Provisions
 - 3. § 63.655 Reporting and Recordkeeping Requirements
 - 4. § 63.660 Storage Vessel Provisions
- E. The requirements in 40 CFR §63.660 and 40 CFR Part 63, Subpart WW (as referenced by 40 CFR §63.660) apply to the tanks in this EUG. (The compliance date for 40 CFR §63.660 was extended in an extension request response letter from the ODEQ to WRC dated March 16, 2016). These requirements include but are not limited to the following:

[40 CFR §63.660 & 40 CFR Part 63, Subpart WW]

1. An EFR shall be equipped with one of the seal configurations listed.

[40 CFR §63.1063(a)(1)(ii)]

- a. A liquid-mounted seal and a secondary seal.
- b. A mechanical shoe seal and a secondary seal. The upper end of the shoe(s) shall extend a minimum of 61 centimeters (24 inches) above the stored liquid surface.
- c. If the EFR is equipped with a liquid-mounted seal or mechanical shoe seal, or a vapor-mounted seal and secondary seal, as of the proposal date for a referencing subpart, the seal options specified in paragraphs (a)(1)(ii)(A) and (a)(1)(ii)(B) of §63.1063 do not apply until the next time the storage vessel is completely emptied and degassed, or 10 years after the promulgation date of the referencing subpart, whichever occurs first.
- 2. Openings through the deck of the floating roof shall be equipped as described:

- a. Each opening except those for automatic bleeder vents (vacuum breaker vents) and rim space vents shall have its lower edge below the surface of the stored liquid.
- b. Each opening except those for automatic bleeder vents (vacuum breaker vents), rim space vents, leg sleeves, and deck drains shall be equipped with a deck cover. The deck cover shall be equipped with a gasket between the cover and the deck.
- c. Each automatic bleeder vent (vacuum breaker vent) and rim space vent shall be equipped with a gasketed lid, pallet, flapper, or other closure device.

- d. Each opening for a fixed roof support column may be equipped with a flexible fabric sleeve seal instead of a deck cover.
- e. Each opening for a sample well or deck drain (that empties into the stored liquid) may be equipped with a slit fabric seal or similar device that covers at least 90 percent of the opening, instead of a deck cover.
- f. Each cover on access hatches and gauge float wells shall be designed to be bolted or fastened when closed.
- g. Each opening for an unslotted guidepole shall be equipped with a pole wiper, and each unslotted guidepole shall be equipped with a gasketed cap on the top of the guidepole.
- h. Each opening for a slotted guidepole shall be equipped with one of the control device configurations specified in paragraphs (a)(2)(viii)(A) and (a)(2)(viii)(B) of §63.1063.
- 3. The tank's floating roof shall be floating on the stored liquid surface at all times except when the floating roof must be supported by the leg supports or other support devices. When the storage vessel is storing liquid, but the liquid depth is insufficient to float the floating roof, the process of filling to the point of refloating the floating roof shall be continuous and shall be performed as soon as practicable. [40 CFR §63.1063(b)(1)&(2)]
- 4. Each cover over an opening in the floating roof, except for automatic bleeder vents (vacuum breaker vents) and rim space vents, shall be closed at all times, except when the cover must be opened for access.

 [40 CFR §63.1063(b)(3)]
- 5. Each automatic bleeder vent (vacuum breaker vents) and rim space vent must be closed at all times, except when the vent is required to be opened to relieve excess pressure or vacuum, in accordance with the tank manufacturer's design. [40 CFR §63.1063(b)(4)]
- 6. Each unslotted guidepole cap must be closed at all times except when gauging the liquid level or taking liquid samples. [40 CFR §63.1063(b)(5)]
- 7. Tank inspections must be performed using the procedures prescribed in 40 CFR §63.1063(c)(2)(i) through (c)(2)(iv). [40 CFR §63.1063(c)(2)]
- 8. Conditions causing tank inspection failures must be repaired as specified in 40 CFR §63.1063(e)(1) or (e)(2). [40 CFR §63.1063(e)]
- 9. Records of storage vessel dimensions, capacity, and an identification of the liquid stored in the vessel must be kept for as long as liquid is stored in the tank

[40 CFR §63.1065(a)]

10. Records of floating roof inspection results must be kept as specified in 40 CFR §63.1065(b)(1) and (b)(2). Documentation of any repair extensions must be kept.

- 11. Records of dates when a floating roof is set on its legs or other support devices, dates when the roof was refloated, and records indicating whether the process of refloating was continuous must be kept. [40 CFR §63.1065(c)]
- 12. Records required under 40 CFR §63.660 shall be retained for the length of time described in 40 CFR §63.1065 and must be kept in such a manner that they can readily be accessed within 24 hours. [40 CFR §63.1065]
- 13. Notifications of start-up and inspections shall be submitted. Reports of inspection failures shall be submitted when failures occur. [40 CFR §63.1066(a) and (b)]
- F. Upon demonstration of compliance with the standards in 40 CFR §63.660, the control requirements in 40 CFR §63.646 no longer apply. [40 CFR §83.646 & 660]

<u>EUG 13 – External Floating Roof Tank, Subject to NSPS Subpart Ka, Subject to 40 CFR</u> Part 63 Subpart CC (Group 1 Storage Vessels), and 40 CFR Part 63, Subpart WW

Ī				Maximum	Maximum	V	OC
	EU	Point	Contents	True Vapor Pressure, psia	Annual Throughput, bbl. (12-Month Rolling Total)	lb/hr	TPY
	P-T303	P-T303	Crude oil / naphtha	11.0	17,739,000	5.12	13.09

- A. The permittee shall comply with 40 CFR Part 63, Subpart CC for the storage vessels in this EUG including but not limited to: [40 CFR §§ 63.640-671]
 - 1. § 63.642 General Standards
 - 2. § 63.646 Storage Vessel Provisions
 - 3. § 63.655 Reporting and Recordkeeping Requirements
 - 4. § 63.660 Storage Vessel Provisions
- B. The requirements in 40 CFR §63.660 and 40 CFR Part 63, Subpart WW (as referenced by 40 CFR §63.660) apply to the tanks in this EUG. (The compliance date for 40 CFR §63.660 was extended in an extension request response letter from the ODEQ to WRC dated March 16, 2016). These requirements include the following:

[40 CFR §63.660 & 40 CFR Part 63, Subpart WW]

1. An EFR shall be equipped with one of the seal configurations listed.

[40 CFR §63.1063(a)(1)(ii)]

- a. A liquid-mounted seal and a secondary seal.
- b. A mechanical shoe seal and a secondary seal. The upper end of the shoe(s) shall extend a minimum of 61 centimeters (24 inches) above the stored liquid surface.
- c. If the EFR is equipped with a liquid-mounted seal or mechanical shoe seal, or a vapor-mounted seal and secondary seal, as of the proposal date for a referencing subpart, the seal options specified in paragraphs (a)(1)(ii)(A) and (a)(1)(ii)(B) of §63.1063 do not apply until the next time the storage vessel is completely emptied and degassed, or 10 years after the promulgation date of the referencing subpart, whichever occurs first.
- 2. Openings through the deck of the floating roof shall be equipped as described:

- a. Each opening except those for automatic bleeder vents (vacuum breaker vents) and rim space vents shall have its lower edge below the surface of the stored liquid.
- b. Each opening except those for automatic bleeder vents (vacuum breaker vents), rim space vents, leg sleeves, and deck drains shall be equipped with a deck cover. The deck cover shall be equipped with a gasket between the cover and the deck.
- c. Each automatic bleeder vent (vacuum breaker vent) and rim space vent shall be equipped with a gasketed lid, pallet, flapper, or other closure device.
- d. Each opening for a fixed roof support column may be equipped with a flexible fabric sleeve seal instead of a deck cover.
- e. Each opening for a sample well or deck drain (that empties into the stored liquid) may be equipped with a slit fabric seal or similar device that covers at least 90 percent of the opening, instead of a deck cover.
- f. Each cover on access hatches and gauge float wells shall be designed to be bolted or fastened when closed.

- g. Each opening for an unslotted guidepole shall be equipped with a pole wiper, and each unslotted guidepole shall be equipped with a gasketed cap on the top of the guidepole.
- h. Each opening for a slotted guidepole shall be equipped with one of the control device configurations specified in paragraphs (a)(2)(viii)(A) and (a)(2)(viii)(B) of §63.1063.
- 3. The tank's floating roof shall be floating on the stored liquid surface at all times except when the floating roof must be supported by the leg supports or other support devices. When the storage vessel is storing liquid, but the liquid depth is insufficient to float the floating roof, the process of filling to the point of refloating the floating roof shall be continuous and shall be performed as soon as practicable. [40 CFR §63.1063(b)(1)&(2)]
- 4. Each cover over an opening in the floating roof, except for automatic bleeder vents (vacuum breaker vents) and rim space vents, shall be closed at all times, except when the cover must be opened for access.

 [40 CFR §63.1063(b)(3)]
- 5. Each automatic bleeder vent (vacuum breaker vents) and rim space vent must be closed all times, except when the vent is required to be opened to relieve excess pressure or vacuum, in accordance with the tank manufacturer's design. [40 CFR §63.1063(b)(4)]
- 6. Each unslotted guidepole cap must be closed at all times except when gauging the liquid level or taking liquid samples. [40 CFR §63.1063(b)(5)]
- 7. Tank inspections must be performed using the procedures prescribed in 40 CFR §63.1063(c)(2)(i) through (c)(2)(iv). [40 CFR §63.1063(c)(2)]
- 8. Conditions causing tank inspection failures must be repaired as specified in 40 CFR §63.1063(e)(1) or (e)(2). [40 CFR §63.1063(e)]
- 9. Records of storage vessel dimensions, capacity, and an identification of the liquid stored in the vessel must be kept for as long as liquid is stored in the tank [40 CFR §63.1065(a)]
- 10. Records of floating roof inspection results must be kept as specified in 40 CFR §63.1065(b)(1) and (b)(2). Documentation of any repair extensions must be kept.

- Records of dates when a floating roof is set on its legs or other support devices, dates when the roof was refloated, and records indicating whether the process of refloating was continuous must be kept.

 [40 CFR §63.1065(c)]
- 12. Records required under 40 CFR §63.660 shall be retained for the length of time described in 40 CFR §63.1065 and must be kept in such a manner that they can readily be accessed within 24 hours. [40 CFR §63.1065]
- 13. Notifications of seal inspections shall be submitted, and reports submitted when inspection failures occur. [40 CFR §63.1066(a)]
- C. Upon demonstration of compliance with the standards in 40 CFR §63.660, the control requirements in 40 CFR §63.646 no longer apply. [40 CFR §83.646 & 660]
- D. The permittee shall keep records of the petroleum liquid stored, the period of storage, and the maximum true vapor pressure of the liquid during the storage period, and monthly records of throughput of each of the above tanks.

 [OAC 252:100-43]

EUG 14 – External Floating Roof Tank, Subject to NSPS Subpart K, Subject to 40 CFR Part 63 Subpart CC (Group 1 Storage Vessels), and 40 CFR Part 63, Subpart WW

			Maximum	Maximum Annual	VC	OC
EU	Point	Contonta	True Vapor	Throughput, bbl.		
EC	I OIIIt	Contents	Pressure,	(12-Month Rolling	lb/hr	TPY
			psia	Total)		
P-T1449	P-T1449	Crude oil	11.0	19,710,000	13.75	30.11

- A. The permittee shall comply with 40 CFR Part 63, Subpart CC for the storage vessels in this EUG including but not limited to: [40 CFR §§ 63.640-671]
 - 1. § 63.642 General Standards
 - 2. § 63.646 Storage Vessel Provisions
 - 3. § 63.655 Reporting and Recordkeeping Requirements
 - 4. § 63.660 Storage Vessel Provisions
- B. The requirements in 40 CFR §63.660 and 40 CFR Part 63, Subpart WW (as referenced by 40 CFR §63.660) apply to the tanks in this EUG. (The compliance date for 40 CFR §63.660 was extended in an extension request response letter from the ODEQ to WRC dated March 16, 2016). These requirements include but are not limited to the following:

[40 CFR §63.660 & 40 CFR Part 63, Subpart WW]

1. An EFR shall be equipped with one of the seal configurations listed.

[40 CFR §63.1063(a)(1)(ii)]

- a. A liquid-mounted seal and a secondary seal.
- b. A mechanical shoe seal and a secondary seal. The upper end of the shoe(s) shall extend a minimum of 61 centimeters (24 inches) above the stored liquid surface.
- c. If the EFR is equipped with a liquid-mounted seal or mechanical shoe seal, or a vapor-mounted seal and secondary seal, as of the proposal date for a referencing subpart, the seal options specified in paragraphs (a)(1)(ii)(A) and (a)(1)(ii)(B) of §63.1063 do not apply until the next time the storage vessel is completely emptied and degassed, or 10 years after the promulgation date of the referencing subpart, whichever occurs first.
- 2. Openings through the deck of the floating roof shall be equipped as described:

- a. Each opening except those for automatic bleeder vents (vacuum breaker vents) and rim space vents shall have its lower edge below the surface of the stored liquid.
- b. Each opening except those for automatic bleeder vents (vacuum breaker vents), rim space vents, leg sleeves, and deck drains shall be equipped with a deck cover. The deck cover shall be equipped with a gasket between the cover and the deck.
- c. Each automatic bleeder vent (vacuum breaker vent) and rim space vent shall be equipped with a gasketed lid, pallet, flapper, or other closure device.
- d. Each opening for a fixed roof support column may be equipped with a flexible fabric sleeve seal instead of a deck cover.
- e. Each opening for a sample well or deck drain (that empties into the stored liquid) may be equipped with a slit fabric seal or similar device that covers at least 90 percent of the opening, instead of a deck cover.
- f. Each cover on access hatches and gauge float wells shall be designed to be bolted or fastened when closed.

- g. Each opening for an unslotted guidepole shall be equipped with a pole wiper, and each unslotted guidepole shall be equipped with a gasketed cap on the top of the guidepole.
- h. Each opening for a slotted guidepole shall be equipped with one of the control device configurations specified in paragraphs (a)(2)(viii)(A) and (a)(2)(viii)(B) of this section.
- 3. The tank's floating roof shall be floating on the stored liquid surface at all times except when the floating roof must be supported by the leg supports or other support devices. When the storage vessel is storing liquid, but the liquid depth is insufficient to float the floating roof, the process of filling to the point of refloating the floating roof shall be continuous and shall be performed as soon as practicable. [40 CFR §63.1063(b)(1)&(2)]
- 4. Each cover over an opening in the floating roof, except for automatic bleeder vents (vacuum breaker vents) and rim space vents, shall be closed at all times, except when the cover must be opened for access.

 [40 CFR §63.1063(b)(3)]
- 5. Each automatic bleeder vent (vacuum breaker vents) and rim space vent must be closed all times, except when the vent is required to be opened to relieve excess pressure or vacuum, in accordance with the tank manufacturer's design. [40 CFR §63.1063(b)(4)]
- 6. Each unslotted guidepole cap must be closed at all times except when gauging the liquid level or taking liquid samples. [40 CFR §63.1063(b)(5)]
- 7. Tank inspections must be performed using the procedures prescribed in 40 CFR §63.1063(c)(2)(i) through (c)(2)(iv). [40 CFR §63.1063(c)(2)]
- 8. Conditions causing tank inspection failures must be repaired as specified in 40 CFR §63.1063(e)(1) or (e)(2). [40 CFR §63.1063(e)]
- 9. Records of storage vessel dimensions, capacity, and an identification of the liquid stored in the vessel must be kept for as long as liquid is stored in the tank [40 CFR §63.1065(a)]
- 10. Records of floating roof inspection results must be kept as specified in 40 CFR §63.1065(b)(1) and (b)(2). Documentation of any repair extensions must be kept.

- 11. Records of dates when a floating roof is set on its legs or other support devices, dates when the roof was refloated, and records indicating whether the process of refloating was continuous must be kept. [40 CFR §63.1065(c)]
- 12. Records required under 40 CFR §63.660 shall be retained for the length of time described in 40 CFR §63.1065 and must be kept in such a manner that they can readily be accessed within 24 hours. [40 CFR §63.1065]
- 13. Notifications of seal inspections shall be submitted, and reports submitted when inspection failures occur. [40 CFR §63.1066(a)]
- C. Upon demonstration of compliance with the standards in 40 CFR §63.660, the control requirements in 40 CFR §63.646 no longer apply. [40 CFR §863.646 & 660]
- D. The permittee shall keep records of the petroleum liquid stored, the period of storage, and the maximum true vapor pressure of the liquid during the storage period, and monthly records of throughput of each of the above tanks.

 [OAC 252:100-43]

EUG 15 - Asphalt Unit	Tanks Subject 40	CFR Part 63 Sul	bpart LLLLL (Group 2 Asphalt
Storage Tanks)				

Tank ID	Туре	Material Handled	Capacity (bbls)	Height (ft)	Diameter (ft)	VOC Emissions Limits, TPY
P-T1331	Cone roof	Asphalt	5,000	40	30	0.45
P-T1332	Cone roof	Asphalt	5,000	40	30	0.45
P-T1333	Cone roof	Asphalt	5,000	40	30	0.45
P-T1337	Cone roof	Asphalt	1,500	32	18.5	0.31
P-T1338	Cone roof	Asphalt	1,500	32	18.5	0.31

- A. The permittee shall be authorized to process up to a total throughput of 1,090,300 barrels per year of asphalt, 12-month rolling total. [OAC 252:100-8-6]
- B. H₂S discharges from storage tanks and processing vessels shall be limited to 200 ppm or less. All air discharges from storage tanks and process vessels shall be vented to Sulfatreat or equivalent devices for control of H₂S emissions. Testing of H₂S emissions from these points shall be conducted at least once per week using Draeger tubes or an equivalent method approved by AQD. Testing shall be conducted in a manner to preclude dilution of the sample with ambient air.

 [OAC 252:100-31]
- C. The above emissions units are subject to 40 CFR Part 63, Subpart LLLLL including but not limited to: [40 CFR §§63.8680-8696]
 - 1. §63.8680 What is the purpose of this subpart?
 - 2. §63.8681 Am I subject to this subpart? (a)-(f)
 - 3. §63.8682 What parts of my plant does this subpart cover? (a)-(e)
 - 4. §63.8683 When must I comply with this subpart? (b) & (d)
 - 5. §63.8684 What emission limitations must I meet? (a)
 - 6. §63.8685 What are my general requirements for complying with this subpart? (a)-(d)
 - 7. §63.8686 By what date must I conduct performance tests or other initial compliance demonstrations? (a) & (b)
 - 8. §63.8687 What performance tests, design evaluations, and other procedures must I used? (a)-(c)
 - 9. §63.8688 What are my monitoring installation, operation, and maintenance requirements?
 - 10. §63.8689 How do I demonstrate initial compliance with the emission limitations? (a)-(c)
 - 11. §63.8692 What notifications must I submit and when? (a)-(f)
 - 12. §63.8693 What reports must I submit and when? (a)-(f)
 - 13. §63.8694 What records must I keep? (a) & (b)
 - 14. §63.8695 In what form and how long must I keep my records? (a)-(c)
 - 15. §63.8680 What parts of the general provisions apply to me?

D. The maximum asphalt storage temperature for tanks in this EUG must remain below 500 °F for the tanks to be defined as Group 2 Asphalt Storage Tanks. If the maximum storage temperature exceeds 500 °F, the maximum true vapor pressure of the asphalt must remain below 1.5 psia for the tanks to be defined as Group 2 Asphalt Storage tanks.

[40 CFR §63.8698]

E. Exhaust gases from the tanks in this EUG are limited to 0 percent opacity. This opacity limit may be exceeded for one consecutive 15-minute period in any 24-hour period when the storage tank transfer lines are being cleared. [40 CFR §63.8684(a)]

<u>EUG 16 – Internal Floating Roof Tank, Subject to 40 CFR Part 60, Subpart Kb; Subject to 40 CFR Part 63 Subpart CC (Group 1 Storage Vessels)</u>

EU	Point	Normal Contents	Capacity	Installed Date
P-T1472	P-T1472	Gasoline / Diesel	34,700 bbl	6/73

- A. The internal floating roof shall be equipped with a closure device between the wall of the storage vessel and the edge of the internal floating roof that meets the requirements of 40 CFR §60.112b(a)(1)(ii).
- B. The permittee shall keep monthly records of throughput.

[OAC 252:100-43]

- C. The permittee shall comply with 40 CFR Part 63, Subpart CC for the storage vessels in this EUG including but not limited to: [40 CFR §§ 63.640-671]
 - 1. § 63.642 General Standards
 - 2. § 63.646 Storage Vessel Provisions
 - 3. § 63.655 Reporting and Recordkeeping Requirements
 - 4. § 63.660 Storage Vessel Provisions
- D. The requirements in 40 CFR §63.660 and 40 CFR Part 63, Subpart WW (as referenced by 40 CFR §63.660) apply to the tanks in this EUG. (The compliance date for 40 CFR §63.660 was extended in an extension request response letter from the ODEQ to WRC dated March 16, 2016). These requirements include but are not limited to the following:

[40 CFR §63.660 & 40 CFR Part 63, Subpart WW]

1. An IFR shall be equipped with one of the seal configurations listed.

[40 CFR §63.1063(a)(1)(i)]

- a. A liquid-mounted seal.
- b. A mechanical shoe seal.
- c. Two seals mounted one above the other. The lower seal may be vapor-mounted.
- 2. Openings through the deck of the floating roof shall be equipped as described:

- a. Each opening except those for automatic bleeder vents (vacuum breaker vents) and rim space vents shall have its lower edge below the surface of the stored liquid.
- b. Each opening except those for automatic bleeder vents (vacuum breaker vents), rim space vents, leg sleeves, and deck drains shall be equipped with a deck cover. The deck cover shall be equipped with a gasket between the cover and the deck.
- c. Each automatic bleeder vent (vacuum breaker vent) and rim space vent shall be equipped with a gasketed lid, pallet, flapper, or other closure device.
- d. Each opening for a fixed roof support column may be equipped with a flexible fabric sleeve seal instead of a deck cover.

- e. Each opening for a sample well or deck drain (that empties into the stored liquid) may be equipped with a slit fabric seal or similar device that covers at least 90 percent of the opening, instead of a deck cover.
- f. Each cover on access hatches and gauge float wells shall be designed to be bolted or fastened when closed.
- g. Each opening for an unslotted guidepole shall be equipped with a pole wiper, and each unslotted guidepole shall be equipped with a gasketed cap on the top of the guidepole.
- h. Each opening for a slotted guidepole shall be equipped with one of the control device configurations specified in paragraphs (a)(2)(viii)(A) and (a)(2)(viii)(B) of this section.
- 3. The tank's floating roof shall be floating on the stored liquid surface at all times except when the floating roof must be supported by the leg supports or other support devices. When the storage vessel is storing liquid, but the liquid depth is insufficient to float the floating roof, the process of filling to the point of refloating the floating roof shall be continuous and shall be performed as soon as practicable. [40 CFR §63.1063(b)(1)&(2)]
- 4. Each cover over an opening in the floating roof, except for automatic bleeder vents (vacuum breaker vents) and rim space vents, shall be closed at all times, except when the cover must be opened for access. [40 CFR §63.1063(b)(3)]
- 5. Each automatic bleeder vent (vacuum breaker vents) and rim space vent must be closed all times, except when the vent is required to be opened to relieve excess pressure or vacuum, in accordance with the tank manufacturer's design. [40 CFR §63.1063(b)(4)]
- 6. Each unslotted guidepole cap must be closed at all times except when gauging the liquid level or taking liquid samples. [40 CFR §63.1063(b)(5)]
- 7. Tank inspections must be performed using the procedures prescribed in 40 CFR §63.1063(c)(2)(i) through (c)(2)(iv). [40 CFR §63.1063(c)(1)]
- 8. Conditions causing tank inspection failures must be repaired as specified in 40 CFR §63.1063(e)(1) or (e)(2). [40 CFR §63.1063(e)]
- 9. Records of storage vessel dimensions, capacity, and an identification of the liquid stored in the vessel must be kept for as long as liquid is stored in the tank.

[40 CFR §63.1065(a)]

10. Records of floating roof inspection results must be kept as specified in 40 CFR §63.1065(b)(1) and (b)(2). Documentation of any repair extensions must be kept.

- 11. Records of dates when a floating roof is set on its legs or other support devices, dates when the roof was refloated, and records indicating whether the process of refloating was continuous must be kept. [40 CFR §63.1065(c)]
- 12. Records required under 40 CFR §63.660 shall be retained for the length of time described in 40 CFR §63.1065 and must be kept in such a manner that they can readily be accessed within 24 hours. [40 CFR §63.1065]
- 13. Notifications of seal inspections shall be submitted, and reports submitted when inspection failures occur. [40 CFR §63.1066(a)]

<u>EUG 17 – External Floating Roof Tank (Sour Water), Subject to 40 CFR Part 60 Subpart Kb, Subject to 40 CFR Part 63 Subpart CC (Group 1 Storage Vessels)</u>

			Throughput	Vapor	VC	C
EU	Point	Normal Contents	Throughput, Gallons per 12- Month Period	Pressure Limit Psia	lb/hr	TPY
P-T2052	P-T2052	Sour Water Stripper Feed	56,560,000	11.0	1.67	6.65

- A. The permittee shall keep monthly records of throughput of the above tank. [OAC 252:100-43]
- B. The permittee shall comply with 40 CFR Part 63, Subpart CC for the storage vessels in this EUG including but not limited to: [40 CFR §§ 63.640-671]
 - 1. § 63.642 General Standards
 - 2. § 63.646 Storage Vessel Provisions
 - 3. § 63.655 Reporting and Recordkeeping Requirements
 - 4. § 63.660 Storage Vessel Provisions
- C. The requirements in 40 CFR §63.660 and 40 CFR Part 63, Subpart WW (as referenced by 40 CFR §63.660) apply to the tanks in this EUG. (The compliance date for 40 CFR §63.660 was extended in an extension request response letter from the ODEQ to WRC dated March 16, 2016). These requirements include but are not limited to the following:

[40 CFR §63.660 & 40 CFR Part 63, Subpart WW]

1. An EFR shall be equipped with one of the seal configurations listed.

[40 CFR §63.1063(a)(1)(ii)]

- a. A liquid-mounted seal and a secondary seal.
- b. A mechanical shoe seal and a secondary seal. The upper end of the shoe(s) shall extend a minimum of 61 centimeters (24 inches) above the stored liquid surface.
- c. If the EFR is equipped with a liquid-mounted seal or mechanical shoe seal, or a vapor-mounted seal and secondary seal, as of the proposal date for a referencing subpart, the seal options specified in paragraphs (a)(1)(ii)(A) and (a)(1)(ii)(B) of §63.1063 do not apply until the next time the storage vessel is completely emptied and degassed, or 10 years after the promulgation date of the referencing subpart, whichever occurs first.
- 2. Openings through the deck of the floating roof shall be equipped as described:

- a. Each opening except those for automatic bleeder vents (vacuum breaker vents) and rim space vents shall have its lower edge below the surface of the stored liquid.
- b. Each opening except those for automatic bleeder vents (vacuum breaker vents), rim space vents, leg sleeves, and deck drains shall be equipped with a deck cover. The deck cover shall be equipped with a gasket between the cover and the deck.
- c. Each automatic bleeder vent (vacuum breaker vent) and rim space vent shall be equipped with a gasketed lid, pallet, flapper, or other closure device.
- d. Each opening for a fixed roof support column may be equipped with a flexible fabric sleeve seal instead of a deck cover.
- e. Each opening for a sample well or deck drain (that empties into the stored liquid) may be equipped with a slit fabric seal or similar device that covers at least 90 percent of the opening, instead of a deck cover.
- f. Each cover on access hatches and gauge float wells shall be designed to be bolted or fastened when closed.

- g. Each opening for an unslotted guidepole shall be equipped with a pole wiper, and each unslotted guidepole shall be equipped with a gasketed cap on the top of the guidepole.
- h. Each opening for a slotted guidepole shall be equipped with one of the control device configurations specified in paragraphs (a)(2)(viii)(A) and (a)(2)(viii)(B) of §63.1063.
- 3. The tank's floating roof shall be floating on the stored liquid surface at all times except when the floating roof must be supported by the leg supports or other support devices. When the storage vessel is storing liquid, but the liquid depth is insufficient to float the floating roof, the process of filling to the point of refloating the floating roof shall be continuous and shall be performed as soon as practicable. [40 CFR §63.1063(b)(1)&(2)]
- 4. Each cover over an opening in the floating roof, except for automatic bleeder vents (vacuum breaker vents) and rim space vents, shall be closed at all times, except when the cover must be opened for access.

 [40 CFR §63.1063(b)(3)]
- 5. Each automatic bleeder vent (vacuum breaker vents) and rim space vent must be closed all times, except when the vent is required to be opened to relieve excess pressure or vacuum, in accordance with the tank manufacturer's design. [40 CFR §63.1063(b)(4)]
- 6. Each unslotted guidepole cap must be closed at all times except when gauging the liquid level or taking liquid samples. [40 CFR §63.1063(b)(5)]
- 7. Tank inspections must be performed using the procedures prescribed in 40 CFR §63.1063(c)(2)(i) through (c)(2)(iv). [40 CFR §63.1063(c)(2)]
- 8. Conditions causing tank inspection failures must be repaired as specified in 40 CFR §63.1063(e)(1) or (e)(2). [40 CFR §63.1063(e)]
- 9. Records of storage vessel dimensions, capacity, and an identification of the liquid stored in the vessel must be kept for as long as liquid is stored in the tank [40 CFR §63.1065(a)]
- 10. Records of floating roof inspection results must be kept as specified in 40 CFR §63.1065(b)(1) and (b)(2). Documentation of any repair extensions must be kept.

[40 CFR §63.1065(b)&(d)]

- 11. Records of dates when a floating roof is set on its legs or other support devices, dates when the roof was refloated, and records indicating whether the process of refloating was continuous must be kept.

 [40 CFR §63.1065(c)]
- 12. Records required under 40 CFR §63.660 shall be retained for the length of time described in 40 CFR §63.1065 and must be kept in such a manner that they can readily be accessed within 24 hours. [40 CFR §63.1065]
- 13. Notifications of seal inspections shall be submitted, and reports submitted when inspection failures occur. [40 CFR §63.1066(a)]
- D. Upon demonstration of compliance with the standards in 40 CFR §63.660, the control requirements in 40 CFR §63.646 no longer apply. [40 CFR §863.646 & 660]

EUG 18 – Cone Roof Tanks, Subject to 40 CFR Part 63, Subpart CC (Group 2 Tanks)

EU	Point	Normal Contents	Capacity (bbl.)	VOC TPY
P-T1501	P-T1501	Crude Oil	400	
P-T1502	P-T1502	Crude Oil	400	47.60
P-T1503	P-T1503	Crude Oil	400	47.60
P-T1507	P-T1507	Crude Oil	400	

EU	Point	Normal Contents	Capacity (bbl.)	VOC TPY
P-T1504	P-T1504	Crude Oil	400	
P-T1505	P-T1505	Crude Oil	400	31.73
P-T1506	P-T1506	Crude Oil	400	
P-T605A	P-T605A	Crude Oil	400	30.12
P-T605B	P-T605B	Crude Oil	400	30.12
P-T501	P-T501	Jet Fuel	25,700	0.74
46-T502	46-T502	Renewable Distillate	10,000	0.37
46-T503	46-T503	Renewable Distillate	10,000	0.37
46-T504	46-T504	Renewable Distillate	55,000	1.28
46-T505	46-T505	Renewable Distillate	55,000	1.28

The permittee shall keep monthly records of throughput and calculations of VOC emissions A. from each of the above tanks. [OAC 252:100-43]

EUG 19 – Internal Floating Roof Tanks, Subject to 40 CFR Part 63, Subpart CC (Group 2 Tanks)

EU	Point	Normal Contents	Capacity (bbl.)	VOC TPY
P-T603	P-T603	Crude Oil	431	5.18
P-T604A	P-T604A	Crude Oil	400	6.06
P-T604B	P-T604B	Crude Oil	400	6.96

- The permittee shall comply with 40 CFR Part 63, Subpart CC for the storage vessels in this A. EUG including but not limited to: [40 CFR §§ 63.640-671]
 - § 63.642 General Standards 1.
 - 2. § 63.646 Storage Vessel Provisions
 - 3. § 63.655 Reporting and Recordkeeping Requirements
 - § 63.660 Storage Vessel Provisions
- В. The requirements in 40 CFR §63.660 and 40 CFR Part 63, Subpart WW (as referenced by 40 CFR §63.660) apply to the tanks in this EUG. (The compliance date for 40 CFR §63.660 was extended in an extension request response letter from the ODEQ to WRC dated March 16, 2016). These requirements include but are not limited to the following:

[40 CFR §63.660 & 40 CFR Part 63, Subpart WW]

1. An IFR shall be equipped with one of the seal configurations listed.

[40 CFR §63.1063(a)(1)(i)]

- a. A liquid-mounted seal.
- b. A mechanical shoe seal.
- c. Two seals mounted one above the other. The lower seal may be vapor-mounted.
- Openings through the deck of the floating roof shall be equipped as described: 2.

[40 CFR §63.1063(a)(2)]

a. Each opening except those for automatic bleeder vents (vacuum breaker vents) and rim space vents shall have its lower edge below the surface of the stored liquid.

- b. Each opening except those for automatic bleeder vents (vacuum breaker vents), rim space vents, leg sleeves, and deck drains shall be equipped with a deck cover. The deck cover shall be equipped with a gasket between the cover and the deck.
- c. Each automatic bleeder vent (vacuum breaker vent) and rim space vent shall be equipped with a gasketed lid, pallet, flapper, or other closure device.
- d. Each opening for a fixed roof support column may be equipped with a flexible fabric sleeve seal instead of a deck cover.
- e. Each opening for a sample well or deck drain (that empties into the stored liquid) may be equipped with a slit fabric seal or similar device that covers at least 90 percent of the opening, instead of a deck cover.
- f. Each cover on access hatches and gauge float wells shall be designed to be bolted or fastened when closed.
- g. Each opening for an unslotted guidepole shall be equipped with a pole wiper, and each unslotted guidepole shall be equipped with a gasketed cap on the top of the guidepole.
- h. Each opening for a slotted guidepole shall be equipped with one of the control device configurations specified in paragraphs (a)(2)(viii)(A) and (a)(2)(viii)(B) of §63.1063.
- 3. The tank's floating roof shall be floating on the stored liquid surface at all times except when the floating roof must be supported by the leg supports or other support devices. When the storage vessel is storing liquid, but the liquid depth is insufficient to float the floating roof, the process of filling to the point of refloating the floating roof shall be continuous and shall be performed as soon as practicable.

[40 CFR §63.1063(b)(1)&(2)]

- 4. Each cover over an opening in the floating roof, except for automatic bleeder vents (vacuum breaker vents) and rim space vents, shall be closed at all times, except when the cover must be opened for access. [40 CFR §63.1063(b)(3)]
- 5. Each automatic bleeder vent (vacuum breaker vents) and rim space vent must be closed all times, except when the vent is required to be opened to relieve excess pressure or vacuum, in accordance with the tank manufacturer's design. [40 CFR §63.1063(b)(4)]
- 6. Each unslotted guide pole cap must be closed at all times except when gauging the liquid level or taking liquid samples. [40 CFR §63.1063(b)(5)]
- 7. Tank inspections must be performed using the procedures prescribed in 40 CFR §63.1063(c)(2)(i) through (c)(2)(iv). [40 CFR §63.1063(c)(1)]
- 8. Conditions causing tank inspection failures must be repaired as specified in 40 CFR §63.1063(e)(1) or (e)(2). [40 CFR §63.1063(e)]
- 9. Records of storage vessel dimensions, capacity, and an identification of the liquid stored in the vessel must be kept for as long as liquid is stored in the tank.

[40 CFR §63.1065(a)]

10. Records of floating roof inspection results must be kept as specified in 40 CFR §63.1065(b)(1) and (b)(2). Documentation of any repair extensions must be kept.

- 11. Records of dates when a floating roof is set on its legs or other support devices, dates when the roof was refloated, and records indicating whether the process of refloating was continuous must be kept. [40 CFR §63.1065(c)]
- 12. Records required under 40 CFR §63.660 shall be retained for the length of time described in 40 CFR §63.1065 and must be kept in such a manner that they can readily be accessed within 24 hours. [40 CFR §63.1065]

- 13. Notifications of seal inspections shall be submitted, and reports submitted when inspection failures occur. [40 CFR §63.1066(a)]
- C. The permittee shall keep monthly records of throughput of the above tanks.

[OAC 252:100-43]

EUG 20 - Product Loading Facility I Vapor Control, Subject to 40 CFR Part 63 Subpart CC

	Maximum	PM ₁₀ /	PM _{2.5}	S	O_2	VC	OC	NC) _X	C	O
EU	Gasoline Annual Throughput, bbl. (12- Month Rolling Total)	lb/hr	ТРҮ	lb/hr	TPY	lb/hr	ТРҮ	lb/hr	ТРҰ	lb/hr	ТРҮ
P-PLF1	7,227,000	0.11	0.27	0.01	0.02	7.01	12.86	1.46	4.31	1.23	2.96

A. The permittee shall comply with the loading rack standards of 40 CFR Part 63 Subpart CC. Except as provided in §63.650(b) through (d), the permittee shall comply with Subpart R of this part, §§63.421, 63.422(a) through (c) and (e), 63.425(a) through (c) and (e) through (i), 63.427(a) and (b), and 63.428(b), (c), (g)(1), (h)(1) through (3), and (k)

[40 CFR §63.650(a)]

- B. Stack emissions from loading displacements shall not exceed 10 milligrams TOC per liter of gasoline loaded on a six-hour rolling average. [40 CFR §63.422(b)]
 - 1. If using a Vapor Recovery Unit, a continuous emissions monitoring system shall be maintained measuring organic compound concentrations in the discharge from the loading rack. [40 CFR §63.427(a)(1)]
 - 2. If using a Vapor Recovery Unit, Records of CEM readings on the vapor recovery unit stack shall be kept, showing calculated emission rates. [40 CFR §63.428(c)]
 - 3. If using a flare, comply with the applicable requirements in 40 CFR §63.11 and in 40 CFR §63.650(d).
- C. The facility shall assure that nonvapor-tight gasoline cargo tanks will not be reloaded at the facility until vapor tightness documentation is obtained. [40 CFR §63.422(c)]
- D. Records shall be kept of the annual gasoline cargo tank vapor-tightness certification of each tank truck loaded.

 40 CFR §63.428(b)]
- E. Semi-annual reports of loading of cargo tanks for which vapor tightness documentation had not been obtained, CEM readings and emissions calculations, and equipment leaks not repaired within 5 days shall be submitted. [40 CFR §63.428(g)]
- F. Excess emission reports shall be submitted in accordance with 40 CFR 63.10(e)(3).

[40 CFR §63.428(h)]

- G. The permittee shall keep monthly records of throughput of gasoline. [OAC 252:100-43]
- H. The flare shall comply with all applicable provisions of § 63.670 and § 63.671.

<u>EUG 21 – Cone Roof Tank, Subject to 40 CFR Part 63 Subpart CC (Group 2 Storage Vessels)</u>; or 40 CFR Part 60, Subpart QQQ

			Maximum	Maximum Annual	VC	OC	
EU	Point	Normal Contents	True Vapor	Throughput, bbl.			
EU	1 OIII	Normal Contents	Pressure,	(12-Month Rolling	lb/hr	TPY 12.35	
			psia	Total)			
P-T2051	P-T2051	Diesel / 100-W /	0.5	1,346,667		12 35	
1-12031	1-12031	Wastewater	0.5	1,540,007		12.33	

A. The permittee shall keep monthly records of throughput of the above tank.

[OAC 252:100-43]

- B. The permittee shall comply with 40 CFR Part 63, Subpart CC, for the wastewater handling equipment within the refinery including but not limited to [40 CFR §§ 63.640-671]
 - 1. §63.640 Applicability and designation of affected source.
 - 2. §63.641 Definitions.
 - 3. §63.642 General standards.
 - 4. §63.646 Storage vessel provisions.
 - 5. §63.647 Wastewater provisions.
 - 6. §63.648 Equipment leak standards.
 - 7. §63.652 Emissions averaging provisions.
 - 8. §63.655 Reporting and recordkeeping requirements.

<u>EUG 22 – Internal Floating Roof Tank, Subject to NSPS Subpart Kb; Subject to 40 CFR Part 63 Subpart CC</u>

				Maximum	V(OC
EU	Point	Normal Contents	Maximum True Vapor Pressure, psia	Annual Throughput, bbl. (12-Month Rolling Total)	lb/hr	TPY
P-T1324	P-T1324	Wastewater	1.5	2,758,000	2.90	4.47

- A. The internal floating roof shall be equipped with one of the following seal configurations: a liquid-mounted seal, a mechanical shoe seal, or two seals mounted one above the other and the lower seal may be vapor mounted.

 [40 CFR § 63.1063(a)(1)(i)(A), (B), & (C)]
- B. The permittee shall keep monthly records of throughput of the above tank. [OAC 252:100-43]
- C. The permittee shall comply with 40 CFR Part 63, Subpart CC for the storage vessel in this EUG including but not limited to: [40 CFR §§ 63.640-671]
 - 1. § 63.642 General Standard
 - 2. § 63.646 Storage Vessel Provisions
 - 3. § 63.655 Reporting and Recordkeeping Requirements
 - 4. § 63.660 Storage Vessel Provisions
- D. The requirements in 40 CFR §63.660 and 40 CFR Part 63, Subpart WW (as referenced by 40 CFR §63.660) apply to the tank in this EUG. These requirements include but are not limited to the following: [40 CFR §63.660 & 40 CFR Part 63, Subpart WW]

1. Openings through the deck of the floating roof shall be equipped as described:

[40 CFR §63.1063(a)(2)]

- a. Each opening except those for automatic bleeder vents (vacuum breaker vents) and rim space vents shall have its lower edge below the surface of the stored liquid.
- b. Each opening except those for automatic bleeder vents (vacuum breaker vents), rim space vents, leg sleeves, and deck drains shall be equipped with a deck cover. The deck cover shall be equipped with a gasket between the cover and the deck.
- c. Each automatic bleeder vent (vacuum breaker vent) and rim space vent shall be equipped with a gasketed lid, pallet, flapper, or other closure device.
- d. Each opening for a fixed roof support column may be equipped with a flexible fabric sleeve seal instead of a deck cover.
- e. Each opening for a sample well or deck drain (that empties into the stored liquid) may be equipped with a slit fabric seal or similar device that covers at least 90 percent of the opening, instead of a deck cover.
- f. Each cover on access hatches and gauge float wells shall be designed to be bolted or fastened when closed.
- g. Each opening for an unslotted guidepole shall be equipped with a pole wiper, and each unslotted guidepole shall be equipped with a gasketed cap on the top of the guidepole.
- h. Each opening for a slotted guidepole shall be equipped with one of the control device configurations specified in paragraphs (a)(2)(viii)(A) and (a)(2)(viii)(B) of this section.
- 2. The tank's floating roof shall be floating on the stored liquid surface at all times except when the floating roof must be supported by the leg supports or other support devices. When the storage vessel is storing liquid, but the liquid depth is insufficient to float the floating roof, the process of filling to the point of refloating the floating roof shall be continuous and shall be performed as soon as practicable. [40 CFR §63.1063(b)(1)&(2)]
- 3. Each cover over an opening in the floating roof, except for automatic bleeder vents (vacuum breaker vents) and rim space vents, shall be closed at all times, except when the cover must be opened for access.

 [40 CFR §63.1063(b)(3)]
- 4. Each automatic bleeder vent (vacuum breaker vents) and rim space vent must be closed at all times, except when the vent is required to be opened to relieve excess pressure or vacuum, in accordance with the tank manufacturer's design. [40 CFR §63.1063(b)(4)]
- 5. Each unslotted guidepole cap must be closed at all times except when gauging the liquid level or taking liquid samples. [40 CFR §63.1063(b)(5)]
- 6. Conditions causing tank inspection failures must be repaired as specified in 40 CFR §63.1063(e)(1) or (e)(2). [40 CFR §63.1063(e)]
- 7. Records of storage vessel dimensions, capacity, and an identification of the liquid stored in the vessel must be kept for as long as liquid is stored in the tank [40 CFR §63.1065(a)]
- 8. Records of floating roof inspection results must be kept as specified in 40 CFR §63.1065(b)(1) and (b)(2). Documentation of any repair extensions must be kept.

- 9. Records of dates when a floating roof is set on its legs or other support devices, dates when the roof was refloated, and records indicating whether the process of refloating was continuous must be kept. [40 CFR §63.1065(c)]
- 10. Records required under 40 CFR §63.660 shall be retained for the length of time described in 40 CFR §63.1065 and must be kept in such a manner that they can readily be accessed within 24 hours. [40 CFR §63.1065]

11. Internal floating roofs shall be inspected before the initial filling of the storage vessel. Subsequent inspections shall be performed as specified:

[40 CFR §63.1063(c)(1)(i & ii)]

- a. At least once per year the IFR shall be inspected as specified. Tank-top inspections of IFR's shall be conducted by visually inspecting the floating roof deck, deck fittings, and rim seals through openings in the fixed roof. Any of the conditions described following constitutes inspection failure. Identification of holes or tears in the rim seal is required only for the seal that is visible from the top of the storage vessel.

 [40 CFR §63.1063(d)(1)]
 - i. Stored liquid on the floating roof.
 - ii. Holes or tears in the primary or secondary seal (if one is present).
 - iii. Floating roof deck, deck fittings, or rim seals that are not functioning as designed (as specified in paragraph (a) of §63.1063).
 - iv. Failure to comply with the operational requirements of paragraph (b) of §63.1063.
- b. Each time the storage vessel is completely emptied and degassed, or every 10 years, whichever occurs first, the IFR shall be inspected as specified in paragraph (d)(1) of §63.1063. [40 CFR §63.1063(c)(1)(i)(B)]
- c. Instead of the inspection frequency specified in paragraph (c)(1)(i) of §63.1063, internal floating roofs with two rim seals may be inspected as specified in paragraph (d)(1) of §63.1063 each time the storage vessel is completely emptied and degassed, or every 5 years, whichever occurs first.
- 12. Notifications of seal inspections shall be submitted, and reports submitted when inspection failures occur. [40 CFR §63.1066(a)]
- F. Upon demonstration of compliance with the standards in 40 CFR §63.660, the control requirements in 40 CFR §63.646 no longer apply. [40 CFR §83.646 & 660]

<u>EUG 23 – External Floating Roof Tanks, Subject to 40 CFR Part 63, Subpart CC (Group 2 Tanks)</u>

EU	Point	Normal Contents Capacity		VOC Emissions TPY
46-T500	46-T500	Renewable Feedstock	55,000 bbl.	0.16
46-T501	46-T501	Renewable Feedstock	55,000 bbl.	0.16

- A. The permittee shall comply with 40 CFR Part 63, Subpart CC for the storage vessels in this EUG, including but not limited to: [40 CFR §§ 63.640-63.671]
 - 1. § 63.642 General Standards
 - 2. § 63.646 Storage Vessel Provisions
 - 3. § 63.655 Reporting and Recordkeeping Requirements
 - 4. § 63.660 Storage Vessel Provisions
- B. The requirements in 40 CFR §63.660 and 40 CFR Part 63, Subpart WW (as referenced by 40 CFR §63.660) apply to the tanks in this EUG. (The compliance date for 40 CFR §63.660 was extended in an extension request response letter from the ODEQ to WRC dated March 16, 2016).

 [40 CFR §63.660 & 40 CFR Part 63, Subpart WW]

- C. Upon demonstration of compliance with the standards in 40 CFR §63.660, the control requirements in 40 CFR §63.646 no longer apply. [40 CFR §63.646 & 63.660]
- D. The permittee shall keep records of the petroleum liquid stored, the period of storage, and the maximum true vapor pressure of the liquid during the storage period, and monthly records of throughput of each of the above tanks.

 [OAC 252:100-43]

<u>EUG 24 – External Floating Roof Tank, Subject to 40 CFR Part 60 Subpart Kb, Subject to 40 CFR Part 63 Subpart CC (Group 2 Storage Vessels)</u>

			Throughput	Vapor	VOC	
EU	Point	Normal Contents	Throughput, Gallons per 12- Month Period	Pressure Limit Psia	lb/hr	TPY
P-T2003	P-T2003	Wastewater	2,758,000	1.5	1.94	3.93

A. The external floating roof shall be equipped with a primary liquid-mounted or mechanical shoe seal and a secondary seal. The upper end of the mechanical shoe(s) shall extend a minimum of 61 centimeters (24 inches) above the stored liquid surface.

[40 CFR § 63.1063(a)(1)(ii)(A) & (B)]

- B. The tank with an external floating roof shall not exceed a seal gap to area ratio of 10 square inches per foot diameter for the primary seal nor 1.0 square inch per foot of diameter for the secondary seal. The secondary seal shall be inspected at least once every year and the primary seal shall be inspected at least every 5 years. [40 CFR § 63.1063(d)(2)(ii), (3)(ii), & (3)(iii)]
- C. The permittee shall keep monthly records of throughput of the above tank. [OAC 252:100-43]
- D. The permittee shall comply with 40 CFR Part 63, Subpart CC for the storage vessel in this EUG including but not limited to: [40 CFR §§ 63.640-671]
 - 1. § 63.642 General Standard
 - 2. § 63.646 Storage Vessel Provisions
 - 3. § 63.655 Reporting and Recordkeeping Requirements
 - 4. § 63.660 Storage Vessel Provisions
- E. The requirements in 40 CFR §63.660 and 40 CFR Part 63, Subpart WW (as referenced by 40 CFR §63.660) apply to the tank in this EUG. These requirements include but are not limited to the following: [40 CFR §63.660 & 40 CFR Part 63, Subpart WW]
 - 1. Openings through the deck of the floating roof shall be equipped as described:

- a. Each opening except those for automatic bleeder vents (vacuum breaker vents) and rim space vents shall have its lower edge below the surface of the stored liquid.
- b. Each opening except those for automatic bleeder vents (vacuum breaker vents), rim space vents, leg sleeves, and deck drains shall be equipped with a deck cover. The deck cover shall be equipped with a gasket between the cover and the deck.
- c. Each automatic bleeder vent (vacuum breaker vent) and rim space vent shall be equipped with a gasketed lid, pallet, flapper, or other closure device.
- d. Each opening for a fixed roof support column may be equipped with a flexible fabric sleeve seal instead of a deck cover.
- e. Each opening for a sample well or deck drain (that empties into the stored liquid) may be equipped with a slit fabric seal or similar device that covers at least 90 percent of the opening, instead of a deck cover.

- f. Each cover on access hatches and gauge float wells shall be designed to be bolted or fastened when closed.
- g. Each opening for an unslotted guidepole shall be equipped with a pole wiper, and each unslotted guidepole shall be equipped with a gasketed cap on the top of the guidepole.
- h. Each opening for a slotted guidepole shall be equipped with one of the control device configurations specified in paragraphs (a)(2)(viii)(A) and (a)(2)(viii)(B) of §63.1063.
- 2. The tank's floating roof shall be floating on the stored liquid surface at all times except when the floating roof must be supported by the leg supports or other support devices. When the storage vessel is storing liquid, but the liquid depth is insufficient to float the floating roof, the process of filling to the point of refloating the floating roof shall be continuous and shall be performed as soon as practicable. [40 CFR §63.1063(b)(1)&(2)]
- 3. Each cover over an opening in the floating roof, except for automatic bleeder vents (vacuum breaker vents) and rim space vents, shall be closed at all times, except when the cover must be opened for access.

 [40 CFR §63.1063(b)(3)]
- 4. Each automatic bleeder vent (vacuum breaker vents) and rim space vent must be closed at all times, except when the vent is required to be opened to relieve excess pressure or vacuum, in accordance with the tank manufacturer's design. [40 CFR §63.1063(b)(4)]
- 5. Each unslotted guidepole cap must be closed at all times except when gauging the liquid level or taking liquid samples. [40 CFR §63.1063(b)(5)]
- 6. Tank inspections must be performed using the procedures prescribed in 40 CFR 63.1063(c)(2)(i) through 63.1063(c)(2)(i). [40 CFR 63.1063(c)(2)]
- 7. Conditions causing tank inspection failures must be repaired as specified in 40 CFR §63.1063(e)(1) or (e)(2). [40 CFR §63.1063(e)]
- 8. Records of storage vessel dimensions, capacity, and an identification of the liquid stored in the vessel must be kept for as long as liquid is stored in the tank [40 CFR §63.1065(a)]
- 9. Records of floating roof inspection results must be kept as specified in 40 CFR §63.1065(b)(1) and (b)(2). Documentation of any repair extensions must be kept.

[40 CFR §63.1065(b)&(d)]

- 9. Records of dates when a floating roof is set on its legs or other support devices, dates when the roof was refloated, and records indicating whether the process of refloating was continuous must be kept. [40 CFR §63.1065(c)]
- 10. Records required under 40 CFR §63.660 shall be retained for the length of time described in 40 CFR §63.1065 and must be kept in such a manner that they can readily be accessed within 24 hours. [40 CFR §63.1065]
- 11. Notifications of seal inspections shall be submitted, and reports submitted when inspection failures occur. [40 CFR §63.1066(a)]

EUG 29 - Fugitive Emissions Subject to 40 CFR Part 63 Subpart CC and/or NSPS Subpart GGGa. Fugitive VOC emissions do not have a specific limitation except to comply with the applicable leak detection and repair (LDAR) program.

A. Fugitive Emissions Subject to NSPS Subpart GGGa:

EU	Description	Equipment	Estimated Number of Items
		Gas/vapor valves	1000
	VOC Leakage at	Light liquid valves	1000
EU-3726A	GHDS Unit	Flanges	4100
		Light liquid pumps	15
		Sampling connection	10
		Gas/vapor valves	500
	VOC Leakage at	Light liquid valves	700
EU-3752A	Benfree Unit	Flanges	720
		Light liquid pumps	11
		Relief valves	5
		gas valves	500
		lt liquid valves	1500
		hvy liq valves	50
EU-3736A	VOC Leakage at	flanges	1300
EU-3730A	Diesel HDT Unit	lt liq pumps	20
		hvy liq pumps	5
		gas relief valves	10
		compressors	2
		gas valves	330
		lt liquid valves	130
EU-3728B	VOC Leakage at	hvy liq valves	400
EU-3/28B	ROSE Unit	flanges	1000
		lt liq pumps	3
		hvy liq pumps	10

- 1. The above process units are subject to NSPS Subpart GGGa and shall comply with all applicable requirements for leak detection and repair. [40 CFR § 60.592(a)]
- 2. The owner operator shall comply with the requirements of §§ 60.482-1a through § 60.482-11a except as provided in § 60.593a:
 - a. The operator shall demonstrate compliance with §§ 60.482-1a to 60.482-10a for all affected equipment within 180 days of initial startup which shall be determined by review of records, reports, performance test results, and inspection using methods and procedures specified in § 60.485a unless the equipment is in vacuum service and is identified as required by § 60.486a(e)(5).

 $[\S 60.482-1a(a), (b), \& (d)]$

- b. The owner or operator shall comply with the monitoring, inspection, and repair requirements, for pumps in light liquid service, of §§ 60.482-2a(a), (b), and (c) except as provided in §§ 60.482-2a(d), (e), and (f).
- c. Compressors in hydrogen service are exempt from the requirements of § 60.592a if an owner or operator demonstrates that a compressor is in hydrogen service. [§ 60.593a(b)(1)]
- d. The owner or operator shall comply with the operation and monitoring requirements, for pressure relief devices in gas/vapor service, of §§ 60.482-4a(a) and (b) except as provided in § 60.482-4a(c) and (d).

- e. The owner or operator shall comply with the applicable standards of § 60.482-5a for sampling connection systems.
- f. Each open-ended valve or line shall be equipped with a cap, blind flange, plug, or a second valve. The cap, blind flange, plug, or second valve shall seal the open end at all times except during operations requiring process fluid flow through the open-ended valve or line. Each open-ended valve or line equipped with a second valve shall be operated in a manner such that the valve on the process fluid end is closed before the second valve is closed. When a double block-and-bleed system is being used, the bleed valve or line may remain open during operations that require venting the line between the block valves but shall be closed at all other times. [§ 60.482-6a]
- g. The owner operator shall comply with the monitoring, inspection, and repair requirements, for valves in gas/vapor service and light liquid service, of §§ 60.482-7a(b) through (e), except as provided in 60.482-7a(f), (g), and (h), §§ 60.483-1a, 60.483-2a, and 60.482-1a(c). [§ 60.482-7a(a)]
- h. The owner operator shall comply with the monitoring and repair requirements, or pumps and valves in heavy liquid service, pressure relief devices in light liquid or heavy liquid service, and flanges and other connectors, of §§ 60.482-8a(a) through (d). [§ 60.482-8a]
- i. Delay of repair of equipment is allowed if it meets one of the requirements of §\$60.482-9a(a) through (e).
- j. The owner or operator using a closed vent system and control device to comply with these provisions shall comply with the design, operation, monitoring and other requirements of 60.482-10a(b) through (m). [§ 60.482-10a(a)]
- k. The owner or operator shall comply with the applicable standards of § 60.482-11a for connectors in gas/vapor service and in light liquid service.
- 1. An owner or operator may elect to comply with the alternative requirements for valves of §§ 60.483-1a and 60.483-2a. [§ 60.592a(b) & § 60.482-1a(b)]
- m. Each owner or operator subject to the provisions of NSPS Subpart GGGa shall comply with the test method and procedures of § 60.485a except as provided in §§ 60.593a. [§ 60.592a(d)]
- n. Each owner or operator subject to the provisions of NSPS Subpart GGGa shall comply with the recordkeeping requirements of \$ 60.486a and the reporting requirements of \$ 60.487a. [§ 60.592a(e)]

EUG 30 - Fugitive Emissions Subject to 40 CFR Part 63 Subpart CC and/or NSPS Subpart GGG. Fugitive VOC emissions are estimated based on existing equipment items but do not have a specific limitation except to comply with the applicable leak detection and repair (LDAR) program.

A. Fugitive Emissions Subject to NSPS Subpart GGG (Non-HAP Service):

EU	Description	Equipment	Estimated Number of Items
		gas valves	1500
		lt liq valves	1500
	VOC Lastraga at No	hvy liq valves	100
EU-	VOC Leakage at No. 2 Crude Unit and	flanges	4000
3733A	No. 2 Vacuum Unit	lt liq pumps	25
	140. 2 Vacuum Omi	hvy liq pumps	20
		gas relief valves	15
		compr. seals	1
		gas valves	2500
	VOC Leakage at CCR Platformer, No. 1 Splitter, LSR	lt liquid valves	2500
		hvy liq valves	100
EU- 3734A		flanges	8750
	Hydrotreater,	lt liq pumps	60
	Naphtha Unifiner,	hvy liq pumps	10
	and Hydrogen Plant	compressor seals	1
		gas relief valves	15
		gas valves	1500
	VOC Leakage at	lt liq valves	1500
EU-	Alkylation Unit,	hvy liq valves	50
3735A	Propylene Splitter,	flanges	4750
	Butane Defluorinator	lt liq pumps	15
		gas relief valves	30

1. Equipment determined not to be in HAP service (contacting <5% by weight HAP) and which is in VOC service (contacting >10% by weight VOC) shall comply with the requirements of NSPS 40 CFR Part 60, Subpart GGG.

[40 CFR Part 60, Subpart GGG]

- a. §60.592 Standards (a-e);
- b. §60.593 Standards (a-e).

B. Fugitive Emissions Subject to MACT (In HAP Service)

EU	Description	Equipment	Estimated Number of Items
		lt liquid valves	10
EII	VOC Leakage at Bulk Gasoline Terminal	hvy liq valves	350
EU- 3706A		flanges	1100
		lt liq pumps	25
		gas relief valves	15
		gas valves	500
EU-	VOC Leakage at FCCU	lt liq valves	2000
3722A		flanges	4000
		lt liq pumps	35

EU	Description	Equipment	Estimated Number of Items
		gas valves	1511
		lt liq valves	1506
		hvy liq valves	232
EU-	VOC Leakage at	flanges	5923
3725A	Hydrocracker	lt liq pumps	40
		hvy liq pumps	7
		gas relief valves	22
		compressor seals	4
		gas valves	100
		lt liq valves	1600
		hvy liq valves	50
EU-	VOC Leakage at	flanges	5500
3732A	No. 1 Crude Unit	lt liq pumps	30
		hvy liq pumps	15
		gas relief valves	15
		compressor	1
		gas valves	120
		lt liq valves	150
PII	VOC Leakage at	hvy liq valves	20
EU-	Steam, Utilities, and	flanges	250
3740A	Flare System	lt liq pumps	25
		hvy liq pumps	5
		gas relief valves	50
		gas valves	200
		lt liq valves	200
EII 2707	VOC Leakage at	hvy liq valves	5
EU-3707	LPG Unit	flanges	4600
		lt liq pumps	15
		gas relief valves	15
		gas valves	1020
		lt liq valves	1000
EII 2727	VOC Leakage at	hvy liq valves	20
EU-3727	RFG System	flanges	1550
		lt liq pumps	12
		gas relief valves	5
		lt liq valves	1560
		hvy liq valves	5
EH 2710	VOC Leakage at	Flanges	5215
EU-3710	Tank Farm	lt liq pumps	57
		relief valves	10
		open-ended lines	10
EU-	VOC Leakage at	heavy liquid valves	600
3711B	Asphalt Oxidizer	flanges	2600

EU	Description	Equipment	Estimated Number of Items
		light liquid valves	250
	WOOD 1	heavy liquid valves	800
EU- 3732B	VOC Leakage at No. 1 Crude Unit	flanges	1200
37320	No. 1 Clude Offic	light liquid pumps	10
		heavy liquid pumps	35
EII	VOC Leakage at	lt liq valves	30
EU- 3734B	CCR Platformer	flanges	70
37340	Area	heavy liquid pumps	5
	VOC Leakage at Alkylation Unit	open-ended valves	40
EU-		heavy liquid pumps	10
3735B		relief valves	35
		flanges	2000
EII	VOC I aslas a st	hvy liq valves	208
EU- 3711C	VOC Leakage at Asphalt Unit	hvy liq pumps	26
37110	Asphalt Offit	hvy liq flanges	625
	VOC Leakage at	gas valves	9
	Renewable	hvy liq valves	187
EU-3701	Feedstock and	hvy liq pumps	24
	Distillate Product	gas relief valves	4
	Handling Facilities	flanges	442

- 1. All affected equipment, in HAP service (contacting >5% by weight HAP), shall comply with NESHAP, 40 CFR Part 63, Subpart CC. The permittee shall comply with the applicable sections for each affected component. [40 CFR Part 63, Subpart CC]
 - a. $\S63.642$ General Standards (a), (d)(1), (e), & (f);
 - b. §63.648 Equipment Leak Standards (a), (b), (c), & (e-i);
 - c. §63.648 Reporting and Recordkeeping Standards (d), & (f-h).

EUG 35 - Fugitive Emissions Subject to Monitoring Requirements (40 CFR Part 63 Subpart CC and/or NSPS Subpart GGG). Fugitive VOC emissions are estimated based on existing equipment items but do not have a specific limitation except to comply with the applicable LDAR program.

EU	Description	Equipment	Estimated Number of Items
EU- 3740C	MOCI 1	gas valves	177
	VOC Leakage at Amine Treating and Regeneration, SWS, SRU, & TGTU	It liquid valves	100
		hvy liq valves	25
		flanges	1,570
		lt liq pumps	10
		hvy liq pumps	15

- A. All affected equipment, in HAP service (contacting >5% by weight HAP), shall comply with NESHAP, 40 CFR Part 63, Subpart CC. The permittee shall comply with the applicable sections for each affected component. [40 CFR Part 63, Subpart CC]
 - 1. $\S63.642$ General Standards (a), (d)(1), (e), & (f);
 - 2. §63.648 Equipment Leak Standards (a), (b), (c), & (e-i);
 - 3. §63.648 Reporting and Recordkeeping Standards (d), & (f-h).
- B. Equipment determined not to be in HAP service (contacting <5% by weight HAP) and which is in VOC service (contacting >10% by weight VOC) shall comply with the requirements of NSPS 40 CFR Part 60, Subpart GGG. [40 CFR Part 60, Subpart GGG]
 - 1. §60.592 Standards (a-e);
 - 2. §60.593 Standards (a-e).

<u>EUG 36 – Steam Boilers Subject to NSPS Part 60 Subpart Dc and Subpart J and MACT Part 63 Subpart DDDDD</u>

Point ID	Emission Unit	PN	I_{10}	SO	O_2	N(Ox	V(OC	C	O
		lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY
40-H1101	Indeck steam boiler	0.05	0.22	3.39	14.85	5.43	23.78	0.60	2.62	9.12	39.95
22-B131	FCCU Boiler	0.05	0.22	3.41	14.94	3.59	15.74	0.54	2.36	8.22	36.00

A. The boilers in this EUG are subject to New Source Performance Standards (NSPS), Subpart J and shall comply with all applicable provisions including but not limited to:

[40 CFR Part 60, Subpart J]

- 1. § 60.104 Standards for $SO_2 (a)(1)$;
- 2. $\S 60.105$ Monitoring of operations (a)(4), (e)(3)(ii);
- 3. $\S 60.106$ Test methods and procedures (e).
- B. NOx emissions for 40-H1101 shall not exceed 0.2 lb/MMBTU. NOx emissions for 22-B131 shall not exceed 0.036 lb/MMBTU. [OAC 252:100-33-2]
- C. The above boilers shall only be fired with refinery fuel gas or pipeline-grade natural gas.

[OAC 252:100-8-6(a)(1)]

D. Monthly records of fuels used in 40-H1101 and 22-B131 shall be kept.

[40 CFR § 60.48c(g)(2)]

- E. The points in this emission unit group are subject to 40 CFR Part 63, Subpart DDDDD NESHAP for Major Sources: Industrial, Commercial, and Institutional Boilers and Process Heaters including but not limited to:
 - 1. §63.7480 What is the purpose of this subpart?
 - 2. §63.7485 Am I subject to this subpart?
 - 3. §63.7490 What is the affected source of this subpart?
 - 4. §63.7491 Are any boilers or process heaters not subject to this subpart?
 - 5. §63.7495 When do I have to comply with this subpart?
 - 6. §63.7499 What are the subcategories of boilers and process heaters?
 - 7. §63.7500 What emission limitations, work practice standards, and operating limits must I meet?
 - 8. §63.7501 [Reserved]
 - 9. §63.7505 What are my general requirements for complying with this subpart?
 - 10. §63.7510 What are my initial compliance requirements and by what date must I conduct them?

- 11. §63.7515 When must I conduct subsequent performance tests, fuel analyses, or tune-ups?
- 12. §63.7520 What stack tests and procedures must I use?
- 13. §63.7521 What fuel analyses, fuel specification, and procedures must I use?
- 14. §63.7522 Can I use emissions averaging to comply with this subpart?
- 15. §63.7525 What are my monitoring, installation, operation, and maintenance requirements?
- 16. §63.7530 How do I demonstrate initial compliance with the emission limitations, fuel specifications and work practice standards?
- 17. §63.7533 Can I use efficiency credits earned from implementation of energy conservation measures to comply with this subpart?
- 18. §63.7535 Is there a minimum amount of monitoring data I must obtain?
- 19. §63.7540 How do I demonstrate continuous compliance with the emission limitations, fuel specifications and work practice standards?
- 20. §63.7541 How do I demonstrate continuous compliance under the emissions averaging provision?
- 21. §63.7545 What notifications must I submit and when?
- 22. §63.7550 What reports must I submit and when?
- 23. §63.7555 What records must I keep?
- 24. §63.7560 In what form and how long must I keep my records?
- 25. §63.7565 What parts of the General Provisions apply to me?
- 26. §63.7570 Who implements and enforces this subpart?
- 27. §63.7575 What definitions apply to this subpart?
- F. The points in this emission unit group are subject to 40 CFR Part 60, Subpart Dc and shall apply with all applicable provisions of this subpart including but not limited to:
 - 1. §60.40c Applicability and delegation of authority.
 - 2. §60.41c Definitions.
 - 3. §60.42c Standard for sulfur dioxide (SO₂).
 - 4. §60.43c Standard for particulate matter (PM).
 - 5. §60.44c Compliance and performance test methods and procedures for sulfur dioxide.
 - 6. §60.45c Compliance and performance test methods and procedures for particulate matter.
 - 7. §60.46c Emission monitoring for sulfur dioxide.
 - 8. §60.47c Emission monitoring for particulate matter.
 - 9. §60.48c Reporting and recordkeeping requirements.
- G. Compliance with the emission limitations for boilers in this EUG shall be based on the following:
 - 1. For hourly CO₇ and VOC: the measured or permitted heat input rate (MMBTUH, HHV) and emission factors from manufacturer data or performance test data. The averaging period is a 7-day rolling period determined daily.
 - 2. For PM₁₀ and PM_{2.5} hourly limits: the measured or permitted heat input rate (MMBTUH, HHV) and emission factors from EPA's 2014 national emissions inventory for fuel gas combustion, manufacturer data, or performance test data. The averaging period is a 7-day rolling period.
 - 3. For hourly NOx: the measured or permitted heat input rate (MMBTUH, HHV) and an emission factor of 0.20 lb/MMBTU (for boiler 40-H1101) or 0.036 lb/MMBTU (for

- boiler 22-B131) or emissions factors from manufacturer data or performance test data. The averaging period is a 7-day rolling period determined daily.
- 4. SO₂ hourly limits are based on the maximum allowable sulfur concentration in the fuel gas (162 ppmv), the maximum hourly and average annual fuel gas rate, and an assumption of 100% conversion of sulfur in the fuel gas to SO₂ in the exhaust.
- 5. Compliance with the TPY limits shall remain on a 12-month rolling total of hourly emissions and shall be calculated each calendar month.

EUG 37 - Fuel Gas Combustion Devices Subject to NSPS Part 60 Subpart Ja and MACT Part 63 Subpart DDDDD

Point ID	Emissions Unit	PN	I ₁₀	SO) 2	N	Ox	VOC		CO	
Point 1D	Emissions Unit	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY
P-GHH2601	GHDS Splitter Reboiler	0.03	0.10	1.60	2.53	1.83	8.02	0.26	1.12	3.91	17.14
P-GHH2602	GHDS Reactor Heater	0.01	0.04	0.56	0.89	1.01	4.42	0.09	0.40	1.38	6.06
P-GHH2603	GHDS Stabilizer Reboiler	0.01	0.04	0.56	0.89	1.01	4.42	0.09	0.40	1.38	6.06
REFORMER	Hydrogen Plant Reformer	0.76	3.01	0.13	0.53	7.44	29.63	0.32	1.26	3.78	15.03

- A. The above units are subject to New Source Performance Standards (NSPS), Subpart Ja and shall comply with all applicable provisions including but not limited to:[40 CFR Part 60, Subpart Ja]
 - 1. § 60.102a Emission limitations;
 - 2. § 60.103a Design, equipment, work practice or operational standards;
 - 3. § 60.104a Performance tests, as applicable;
 - 4. \S 60.107a Monitoring of emissions and operations for process heaters and other fuel gas combustion devices (a)(2), (3), and (4); and
 - 5. § 60.108a Recordkeeping and reporting requirements.
- B. The above units shall only be fired with refinery fuel gas or pipeline-grade natural gas.

[OAC 252:100-8-6(a)(1)]

- C. NOx emissions from the GHDS heaters P-GHH2601, P-GHH2602, and P-GHH2603 shall not exceed 0.06 lb/MMBTU, expressed as NO₂. [OAC 252:100-8-6(a)(1)]
- D. NOx emissions from the GHDS Splitter Reboiler (P-GHH2601) shall not exceed 40 ppm (dry basis, corrected to 0% oxygen) determined daily on a 30-day rolling average.
- E. NOx emissions from the Hydrogen Plant Reformer shall not exceed 60 ppm (dry basis, corrected to 0% oxygen) determined daily on a 30-day rolling average.
- F. The points in this emission unit group are subject to 40 CFR Part 63, Subpart DDDDD NESHAP for Major Sources: Industrial, Commercial, and Institutional Boilers and Process Heaters including but not limited to:
 - 1. §63.7480 What is the purpose of this subpart?
 - 2. §63.7485 Am I subject to this subpart?
 - 3. §63.7490 What is the affected source of this subpart?
 - 4. §63.7491 Are any boilers or process heaters not subject to this subpart?
 - 5. §63.7495 When do I have to comply with this subpart?
 - 6. §63.7499 What are the subcategories of boilers and process heaters?
 - 7. §63.7500 What emission limitations, work practice standards, and operating limits must I meet?

- 8. §63.7501 [Reserved]
- 9. §63.7505 What are my general requirements for complying with this subpart?
- 10. §63.7510 What are my initial compliance requirements and by what date must I conduct them?
- 11. §63.7515 When must I conduct subsequent performance tests, fuel analyses, or tune-ups?
- 12. §63.7520 What stack tests and procedures must I use?
- 13. §63.7521 What fuel analyses, fuel specification, and procedures must I use?
- 14. §63.7522 Can I use emissions averaging to comply with this subpart?
- 15. §63.7525 What are my monitoring, installation, operation, and maintenance requirements?
- 16. §63.7530 How do I demonstrate initial compliance with the emission limitations, fuel specifications and work practice standards?
- 17. §63.7533 Can I use efficiency credits earned from implementation of energy conservation measures to comply with this subpart?
- 18. §63.7535 Is there a minimum amount of monitoring data I must obtain?
- 19. §63.7540 How do I demonstrate continuous compliance with the emission limitations, fuel specifications and work practice standards?
- 20. §63.7541 How do I demonstrate continuous compliance under the emissions averaging provision?
- 21. §63.7545 What notifications must I submit and when?
- 22. §63.7550 What reports must I submit and when?
- 23. §63.7555 What records must I keep?
- 24. §63.7560 In what form and how long must I keep my records?
- 25. §63.7565 What parts of the General Provisions apply to me?
- 26. §63.7570 Who implements and enforces this subpart?
- 27. §63.7575 What definitions apply to this subpart?
- G. Total natural gas feed to the Hydrogen Plant Reformer (SMR) shall not exceed 1,752 MMSCF per year, 12-month rolling total. [OAC 252:100-8-6(a)(1)]
- H. CO₂e emissions from the Hydrogen Plant Reformer (SMR) shall not exceed 120,280 lb CO₂e
 / MMSCF natural gas feed, 30-day average. [OAC 252:100-8-34(b)]
- I. Initial performance testing on the Reformer shall include Reference Methods 1-4, measurements of fuel heating value, and other data as necessary to show compliance with the CO_2e emissions limitation. [OAC252:100-43]
- J. The design of the Reformer shall include the following elements: [OAC 252:100-8-6(a)(1)]
 - 1. Maintenance and fouling control
 - 2. Steam/feed preheating
 - 3. Combustion air controls
 - 4. Process integration (energy efficient design)
 - 5. Reformer with PSA hydrogen purification
 - 6. Latest proven burner designs

 $\underline{EUG~38}$ - Fuel Gas Combustion Devices, Subject to MACT Part 63 Subpart DDDDD and $\underline{NSPS~Subpart~J}$

D-1-4 ID	The stand Till	PN	M_{10}	PM	12.5	S	O ₂	N	Ox	V	oc	(CO
Point ID	Emission Unit	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY
P-VH101	No. 2 Vacuum charge heater	0.04	0.19	0.04	0.15	2.88	12.58	5.04	22.08	0.46	1.98	6.93	30.30
P-DHH801	Hydrotreater charge heater	0.02	0.10	0.02	0.08	1.86	6.79	2.87	10.47	0.30	1.07	4.48	16.34
Р-DHH802	Fractionator charge heater	0.03	0.15	0.03	0.12	2.79	10.18	3.43	12.50	0.44	1.60	6.72	24.50
Р-Н356	CCR No. 2 Interheater	0.03	0.13	0.02	0.10	1.92	8.39	3.36	14.72	0.31	1.32	4.62	20.20
Р-ЈН301	Fractionator charge heater	0.02	0.09	0.02	0.07	1.34	5.87	2.40	10.51	0.21	0.94	3.29	14.43
P-CH151	No. 2 Crude Unit charge heater	0.04	0.17	0.03	0.14	2.67	11.68	3.12	13.67	0.42	1.84	3.12	13.67
P-H48001	SRU Hot Oil Heater	0.04	0.16	0.03	0.13	2.50	10.93	7.80	34.19	0.43	1.88	6.55	28.72
P-HT134	Tank 134 heater	0.01	0.02	0.01	0.02	0.28	1.23	0.84	3.68	0.05	0.20	0.71	3.09
P-HT136	Tank 136 heater	0.01	0.02	0.01	0.02	0.28	1.23	0.84	3.68	0.05	0.20	0.71	3.09
P-HT264	Tank 264 heater	0.01	0.01	0.01	0.01	0.03	0.15	0.10	0.45	0.05	0.20	0.71	3.09
P-CH1	Crude fractionation heater	0.07	0.29	0.05	0.24	3.50	15.33	21.25	93.07	0.71	3.11	10.75	47.09
P-CH2	Crude charge heater	0.04	0.17	0.03	0.14	2.14	9.38	12.95	56.71	0.43	1.89	6.56	28.74
Р-СН3	Crude preflash reboiler	0.02	0.10	0.02	0.09	1.28	5.61	4.61	20.17	0.26	1.14	3.92	17.17

Doir4 ID	Emigaic - II14	PN	A ₁₀	PM	I 2.5	SO	O_2	N	Ox	V	OC	(CO
Point ID	Emission Unit	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY
P-CH121	Vacuum charge heater	0.02	0.10	0.02	0.08	1.50	6.59	4.31	18.89	0.24	1.04	3.62	15.87
P-JH1 & JH2	Hydrocracker reactor heater	0.04	0.16	0.03	0.13	1.90	8.33	6.81	29.81	0.39	1.71	5.84	25.58
P-JH101	Hydrocracker fractionator reboiler	0.04	0.16	0.03	0.13	2.39	10.48	6.86	30.06	0.38	1.65	5.76	25.25
Р-РН3	Unifiner stripper reboiler	0.02	0.09	0.02	0.08	1.13	4.95	4.04	17.69	0.23	1.01	3.47	15.2
P-HH1	Hysomer heater	0.02	0.07	0.01	0.06	0.89	3.90	3.19	13.96	0.18	0.79	2.73	11.96
P-H152	No. 2 splitter reboiler	0.02	0.07	0.01	0.06	0.83	3.64	2.94	12.88	0.17	0.75	2.52	11.04
P-5H1	Alky depropanizer reboiler	0.04	0.19	0.04	0.16	2.94	12.88	9.93	43.51	0.47	2.06	7.08	31.02
P-H1302	Tank 101 heater	0.01	0.02	0.01	0.02	0.28	1.23	0.98	4.29	0.06	0.27	0.84	3.68
P-H1303	Tank 101 heater	0.01	0.04	0.01	0.03	0.46	2.02	1.65	7.21	0.10	0.44	1.42	6.22
P-HT120	Tank 120 heater	0.01	0.01	0.01	0.01	0.03	0.14	0.10	0.43	0.01	0.05	0.09	0.4
P-HT265	Tank 265 heater	0.01	0.01	0.01	0.01	0.03	0.14	0.10	0.43	0.01	0.05	0.09	0.4
P-HT601	Tank 601 heater	0.01	0.01	0.01	0.01	0.02	0.09	0.07	0.31	0.01	0.05	0.06	0.27
P-HT1321	Tank 1321 heater	0.01	0.01	0.01	0.01	0.02	0.09	0.07	0.31	0.01	0.05	0.06	0.27
P-HT1323	Tank 1323 heater	0.01	0.01	0.01	0.01	0.02	0.09	0.07	0.31	0.01	0.05	0.06	0.27

Point ID	Emission Unit	PN	M ₁₀	PM	12.5	S	O_2	N	Ox	V	OC	C	CO
Point 1D	Emission Unit	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY
P-HT1324	Tank 1324 heater	0.01	0.01	0.01	0.01	0.14	0.62	0.50	2.15	0.03	0.14	0.42	1.84
P-H350 P-H351 P-H352	CCR charge heaters	0.09	0.32	0.07	0.26	5.88	17.11	16.87	61.33	0.93	3.37	14.17	51.51
P-PH2	Unifiner charge heater	0.02	0.06	0.02	0.05	1.49	3.33	4.26	13.68	0.23	0.75	3.58	11.49
P-H601	ROSE heater	0.02	0.08	0.02	0.07	1.67	4.30	2.38	8.82	0.26	0.97	4.00	14.82
P-H1301	Tank 107 heater	0.01	0.01	0.01	0.01	0.07	0.33	0.28	1.24	0.02	0.07	0.24	1.04
P-1H4	FCCU Feed preheater	0.06	0.27	0.05	0.22	4.14	18.12	16.11	70.54	0.65	2.86	9.96	43.65
40-B130	Nebraska Package Boiler	0.05	0.22	0.04	0.18	2.58	11.31	10.60	46.43	0.58	2.55	8.90	39.00

- A. These EU shall comply with all applicable provisions of NSPS, Subpart J including but not limited to: [40 CFR Part 60, Subpart J]
 - 1. Fuel for these units shall not contain more than 162 ppm sulfur (0.1 gr/DSCF).

[40 CFR § 60.104(a)(1)]

B. The sulfur content of fuel gas to the units listed shall be continuously monitored for sulfur content using a Continuous Emissions Monitor which has been certified and quality-assured using the methods and procedures of 40 CFR Part 60, Appendices A and F.

[40 CFR § 60.105(a)(4) & OAC 252:100-43]

- C. NOx emissions from Emission Units P-H350/P-H351/P-H352, and 40-B130 shall not exceed 0.1 lb/MMBTU, 3-hour average. [OAC 252:100-33]
- D. NO_X emissions shall not exceed the following
 - 1. 0.04 lb/MMBTU from Emission Unit P-CH151
 - 2. 0.060 lb/MMBTU from Emission Units P-VH101, P-DHH801, P-DHH802, P-H356, and P-JH301
 - 3. 0.116 lb/MMBTU from Emission Unit P-5H1
 - 4. 0.121 lb/MMBTU from Emission Unit P-CH2
 - 5. 0.133 lb/MMBTU from Emission Unit P-1H4
 - 6. 0.150 lb/MMBTU from Emission Unit P-H48001
 - 7. 0.166 lb/MMBTU from Emission Unit P-CH1
 - 8. 0.036 lb/MMBTU from Emission Unit 22-B131 FCCU Boiler
 - 9. 0.098 lb/MMBTU from Emission Units P-CH121, P-JH101, P-CH3, P-JH1, P-JH2, P-PH3, P-PHH1, P-H152, P-H1303, P-H1302, P-H1303, P-HT120, P-HT265, P-HT601, P-HT1321, P-HT1323, and P-HT1324.
- E. Heater P-CH151 shall not exceed the following limits

[OAC 252:100-8-6(a)(1)]

- 1. 0.04 lb/MMBTU CO.
- 2. 0.0055 lb/MMBTU VOC.
- 3. 0.0075 lb/MMBTU PM₁₀.

- F. The points in this emission unit group are subject to 40 CFR Part 63, Subpart DDDDD NESHAP for Major Sources: Industrial, Commercial, and Institutional Boilers and Process Heaters including but not limited to:
 - 1. §63.7480 What is the purpose of this subpart?
 - 2. §63.7485 Am I subject to this subpart?
 - 3. §63.7490 What is the affected source of this subpart?
 - 4. §63.7491 Are any boilers or process heaters not subject to this subpart?
 - 5. §63.7495 When do I have to comply with this subpart?
 - 6. §63.7499 What are the subcategories of boilers and process heaters?
 - 7. §63.7500 What emission limitations, work practice standards, and operating limits must I meet?
 - 8. §63.7501 [Reserved]
 - 9. §63.7505 What are my general requirements for complying with this subpart?
 - 10. §63.7510 What are my initial compliance requirements and by what date must I conduct them?
 - 11. §63.7515 When must I conduct subsequent performance tests, fuel analyses, or tune-ups?
 - 12. §63.7520 What stack tests and procedures must I use?
 - 13. §63.7521 What fuel analyses, fuel specification, and procedures must I use?
 - 14. §63.7522 Can I use emissions averaging to comply with this subpart?
 - 15. §63.7525 What are my monitoring, installation, operation, and maintenance requirements?
 - 16. §63.7530 How do I demonstrate initial compliance with the emission limitations, fuel specifications and work practice standards?
 - 17. §63.7533 Can I use efficiency credits earned from implementation of energy conservation measures to comply with this subpart?
 - 18. §63.7535 Is there a minimum amount of monitoring data I must obtain?
 - 19. §63.7540 How do I demonstrate continuous compliance with the emission limitations, fuel specifications and work practice standards?
 - 20. §63.7541 How do I demonstrate continuous compliance under the emissions averaging provision?
 - 21. §63.7545 What notifications must I submit and when?
 - 22. §63.7550 What reports must I submit and when?
 - 23. §63.7555 What records must I keep?
 - 24. §63.7560 In what form and how long must I keep my records?
 - 25. §63.7565 What parts of the General Provisions apply to me?
 - 26. §63.7570 Who implements and enforces this subpart?
 - 27. §63.7575 What definitions apply to this subpart?
- G. Compliance with the emission limitations for heaters in this EUG shall be based on the following:
 - 1. For CO and VOC, hourly limits: the measured or permitted heat input rate (MMBTUH, HHV) and emission factors in AP-42 (7/98), Section 1.4, manufacture data, or performance test data. The averaging period is a 7-day rolling period.
 - 2. For PM₁₀/PM_{2.5} hourly limits: the measured or permitted heat input rate (MMBTUH, HHV) and emission factors from EPA's 2014 national emissions inventory for fuel gas combustion, manufacture data, or performance test data. The averaging period is a 7-day rolling period.

- 3. For the NOx hourly limit: the measured or permitted heat input rate (MMBTUH, HHV) and an emission factor in AP-42 (7/98), Section 1.4, the emission factor specified in paragraphs C. and D. above), or emissions factors from manufacturer data or performance test data. The averaging period is a 7-day rolling period.
- 4. For the SO₂ hourly limit: the fuel gas flow rate (SCFH) and the emission factor in AP-42 (7/98) Section 1.4 if burning natural gas or the H₂S concentration (ppmvd) if burning refinery fuel gas. The averaging period is a 7-day rolling period.
- 5. Compliance with the TPY limits shall remain on a 12-month rolling total and shall be calculated monthly.
- H. At least once during the term of this permit, the permittee shall conduct performance testing as follows for P-CH1 and furnish a written report to Air Quality. Testing shall be conducted while P-CH1 is being operated at least 90% of permitted capacity. A sampling protocol and notification of testing date(s) shall be submitted at least 30 days in advance of commencement of testing. The following USEPA methods shall be used for testing of emissions, unless otherwise approved by Air Quality:

 [OAC 252:100-43]

Method 1: Sample and Velocity Traverses for Stationary Sources.

Method 2: Determination of Stack Gas Velocity and Volumetric Flow Rate.

Method 3: Gas Analysis for Carbon Dioxide, Excess Air, and Dry Molecular

Weight.

Method 4: Moisture in Stack Gases.

Method 7E: NOx Emissions from Stationary Sources

EUG 39 - Fuel Gas Combustion Device, Subject to 40 CFR 63 Subpart LLLLL

EU	Point	Equipment	ммвтин	Opacity Limit	PM Emission Limitation of OAC 252:100-19, lb/MMBTU	SO ₂ Emission Limitation lb/hr
P-F1301	P-F1301	Asphalt oxidizer incinerator	16.8	20%	0.57	15.37

A. The Asphalt Unit thermal oxidizer (P-FS1301) shall be operated at a temperature of 1,198°F or greater except during start-up; during start-up, it may be operated at a temperature as low as 900°F. The operating temperature of the unit shall be continuously recorded.

[OAC 252:100-43]

- B. These tanks shall comply with 40 CFR Part 63, Subpart LLLLL (National Emissions Standards for Hazardous Air Pollutants: Asphalt Processing and Asphalt Roofing Manufacturing 40 CFR §63.8680 through 40 CFR § 63.8698 upon the effective compliance date.

 [40 CFR §§ 63.8680 & 63.8698]
 - 1. §63.8680 What is the purpose of this subpart?
 - 2. §63.8681 Am I subject to this subpart?
 - 3. §63.8682 What parts of my plant does this subpart cover?
 - 4. §63.8683 When must I comply with this subpart?
 - 5. §63.8684 What emission limitations and operating limits must I meet?

DRAFT/PROPOSED

- 6. §63.8685 What are my general requirements for complying with this subpart?
- 7. §63.8686 By what date must I conduct initial performance tests or other initial compliance demonstrations?
- 8. §63.8687 What performance tests, design evaluations, and other procedures must I use?
- 9. §63.8688 What are my monitoring installation, operation, and maintenance requirements?
- 10. §63.8689 How do I demonstrate initial compliance with the emission limitations?
- 11. §63.8690 How do I monitor and collect data to demonstrate continuous compliance?
- 12. §63.8691 How do I conduct periodic performance tests and demonstrate continuous compliance with the emission limitations and operating limits?
- 13. §63.8692 What notifications must I submit and when?
- 14. §63.8693 What reports must I submit and when?
- 15. §63.8694 What records must I keep?
- 16. §63.8695 In what form and how long must I keep my records?
- 17. §63.8696 What parts of the General Provisions apply to me?
- 18. §63.8698 What definitions apply to this subpart?
- C. If future performance testing using the methods of 40 CFR Part 63, Subpart LLLLL, show that the unit achieves compliance with emissions limitations of Subpart LLLLL at a lower temperature, that lower operating temperature may be maintained.

EUG 43 – Asphalt Unit Heater, Subject to MACT Part 63 Subpart DDDDD

Point ID	Emission Unit	PM ₁₀		SO ₂		NOx		VOC		CO	
	Emission Unit	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY
P-H1331	Asphalt Unit hot oil heater	0.01	0.02	0.01	0.03	0.84	3.68	0.05	0.21	0.71	3.09

- A. The hot oil heater shall be fueled only with pipeline-grade natural gas. [OAC 252:100-31]
- B. The points in this emission unit group are subject to and shall comply with 40 CFR Part 63, Subpart DDDDD.

EUG 45 – Flares, Subject to 40 CFR Part 60, Subpart Ja and 40 CFR Part 63, Subpart CC

EU	Point	Equipment	Installed Date
P-FS1503	P-FS1503	Hydrocracker Flare	2006
P-FS1403	P-FS1403	West Flare	2013

- A. The flares shall comply with all applicable provisions of MACT CC including but not limited to: [40 CFR Part 63, Subpart CC]
 - 1. § 63.643 Miscellaneous Process Vent Provisions (a)(1)
 - 2. § 63.644 Monitoring Provisions for Miscellaneous Process Vents (a)&(c)
 - 3. § 63.645 Test Methods and Procedures for Miscellaneous Process Vents (i)
 - 4. § 63.655 Reporting and Recordkeeping Requirements (f)&(g)
 - 5. § 63.670 Requirements for Flare Control Devices (b)-(r)
 - 6. § 63.671 Requirements for Flare Monitoring Systems (a)-(e)

EUG 46 - Fuel Gas Combustion Devices, Subject to NSPS Subpart Ja and 40 CFR 63 Subpart DDDDD

Point ID Emission	Emission Unit	PI	M_{10}	S	O_2	N(Ox	V(OC	C	0
Point ID	Emission Unit	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY
52-H01	Benfree Unit reboiler	0.04	0.19	2.91	4.72	3.40	14.89	0.46	2.01	7.00	30.66

- A. The Benfree Reboilers shall comply with all applicable provisions of NSPS, Subpart Ja including but not limited to: [40 CFR Part 60, Subpart Ja]
 - 1. § 60.102a Emissions limitations;
 - 2. § 60.103a Design, equipment, work practice or operational standards;
 - 3. § 60.104a Performance tests;
 - 4. § 60.107a Monitoring of emissions and operations for process heaters and other fuel gas combustion devices; and
 - 5. § 60.108a Recordkeeping and reporting requirements.
- B. The above unit shall be fueled with refinery fuel gas or pipeline-grade natural gas only.

[OAC 252:100-8-6(a)(1) and OAC 252:100-31]

- C. The points in this emission unit group are subject to 40 CFR Part 63, Subpart DDDDD NESHAP for Major Sources: Industrial, Commercial, and Institutional Boilers and Process Heaters including but not limited to:
 - 1. §63.7480 What is the purpose of this subpart?
 - 2. §63.7485 Am I subject to this subpart?
 - 3. §63.7490 What is the affected source of this subpart?
 - 4. §63.7491 Are any boilers or process heaters not subject to this subpart?
 - 5. §63.7495 When do I have to comply with this subpart?
 - 6. §63.7499 What are the subcategories of boilers and process heaters?
 - 7. §63.7500 What emission limitations, work practice standards, and operating limits must I meet?
 - 8. §63.7501 [Reserved]
 - 9. §63.7505 What are my general requirements for complying with this subpart?
 - 10. §63.7510 What are my initial compliance requirements and by what date must I conduct them?
 - 11. §63.7515 When must I conduct subsequent performance tests, fuel analyses, or tune-ups?
 - 12. §63.7520 What stack tests and procedures must I use?
 - 13. §63.7521 What fuel analyses, fuel specification, and procedures must I use?
 - 14. §63.7522 Can I use emissions averaging to comply with this subpart?
 - 15. §63.7525 What are my monitoring, installation, operation, and maintenance requirements?
 - 16. §63.7530 How do I demonstrate initial compliance with the emission limitations, fuel specifications and work practice standards?
 - 17. §63.7533 Can I use efficiency credits earned from implementation of energy conservation measures to comply with this subpart?
 - 18. §63.7535 Is there a minimum amount of monitoring data I must obtain?
 - 19. §63.7540 How do I demonstrate continuous compliance with the emission limitations, fuel specifications and work practice standards?

- 20. §63.7541 How do I demonstrate continuous compliance under the emissions averaging provision?
- 21. §63.7545 What notifications must I submit and when?
- 22. §63.7550 What reports must I submit and when?
- 23. §63.7555 What records must I keep?
- 24. §63.7560 In what form and how long must I keep my records?
- 25. §63.7565 What parts of the General Provisions apply to me?
- 26. §63.7570 Who implements and enforces this subpart?
- 27. §63.7575 What definitions apply to this subpart?
- D. NOx emissions from each above heater shall not exceed 40 ppmv (dry basis, corrected to 0-percent excess air) or 0.04 lb/MMBTU, expressed as NO₂, determined on a 30-day rolling average. [40 CFR Part 60, Subpart Ja]
- E. Performance testing as required by 40 CFR Part 60 shall be conducted within 60 days of achieving maximum production rate, not to exceed 180 days from initial start-up.

[40 CFR § 60.8]

- F. Compliance with the emissions limitations for the Benfree Reboiler shall be based on the following:
 - 1. For CO and VOC hourly limits, the fuel gas flow rate (MMBTUH, HHV) and emissions factors in AP-42 (7/98), Section 1.4, manufacturer data, or performance test data. The averaging period is a 7-day rolling period.
 - 2. For PM_{2.5} / PM₁₀ hourly limits: the fuel gas flow rate (MMBTUH, HHV) and emission factors from EPA's 2014 national emissions inventory for fuel gas combustion, manufacturer data, or performance test data. The averaging period is a 7-day rolling period.
 - 3. For NOx hourly limits, the fuel gas flow rate (MMBTUH, HHV), maximum design fuel gas flow rate, or stack exhaust flow rate; and an emission factor of 0.04 lb/MMBTU, 40 ppmv (dry basis, corrected to 0 percent excess air), manufacturer data, or performance test data. The averaging period is a 7-day rolling period.
 - 4. For SO₂ hourly limits: the fuel gas flow rate (SCFH) and emission factors in AP-42 (7/98), Section1.4 (if burning natural gas) or the H₂S concentration (ppmdv) if burning refinery fuel gas. The averaging period is a 7-day rolling period.
 - 5. Compliance with the TPY limits shall remain on a 12-month rolling total and shall be calculated monthly.
- G. A waiver of monitoring H₂S in the fuel to 52-H01 was granted by EPA on April 25, 2018.

<u>EUG 47 – Steam Boilers Subject to NSPS Part 60 Subpart Dc and Subpart Ja and MACT Part 63 Subpart DDDDD</u>

Point ID	Emission Unit	PM ₁₀		PM _{2.5}		SO ₂		NOx		VOC		CO	
Point ID	Emission Unit	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY
40-B130	Wabash Package Boiler	0.05	0.22	0.04	0.18	3.32	5.38	3.98	17.4	0.60	2.65	9.22	40.37

- A. The boiler in this EUG is subject to New Source Performance Standards (NSPS), Subpart Ja and shall comply with all applicable provisions. [40 CFR Part 60, Subpart Ja]
 - 1. § 60.102a Emission limitations;
 - 2. § 60.103a Design, equipment, work practice or operational standards;
 - 3. § 60.104a Performance tests, as applicable;

- 4. \S 60.107a Monitoring of emissions and operations for process heaters and other fuel gas combustion devices (a)(2), (3), and (4); and
- 5. § 60.108a Recordkeeping and reporting requirements.
- B. NO_X emissions from the above boiler shall not exceed 0.20 lb/MMBTU. [OAC 252:100-33-2]
- C. The above boiler shall only be fired with refinery fuel gas or pipeline-grade natural gas.

[OAC 252:100-8-6(a)(1)]

D. Monthly records of fuels used in 40-B130 shall be kept.

[40 CFR 60.48c(g)(2)]

- E. The boiler in this emission unit group is subject to 40 CFR Part 63, Subpart DDDDD NESHAP for Major Sources: Industrial, Commercial, and Institutional Boilers and Process Heaters including but not limited to:
 - 1. §63.7480 What is the purpose of this subpart?
 - 2. §63.7485 Am I subject to this subpart?
 - 3. §63.7490 What is the affected source of this subpart?
 - 4. §63.7491 Are any boilers or process heaters not subject to this subpart?
 - 5. §63.7495 When do I have to comply with this subpart?
 - 6. §63.7499 What are the subcategories of boilers and process heaters?
 - 7. §63.7500 What emission limitations, work practice standards, and operating limits must I meet?
 - 8. §63.7501 [Reserved]
 - 9. §63.7505 What are my general requirements for complying with this subpart?
 - 10. §63.7510 What are my initial compliance requirements and by what date must I conduct them?
 - 11. §63.7515 When must I conduct subsequent performance tests, fuel analyses, or tune-ups?
 - 12. §63.7520 What stack tests and procedures must I use?
 - 13. §63.7521 What fuel analyses, fuel specification, and procedures must I use?
 - 14. §63.7522 Can I use emissions averaging to comply with this subpart?
 - 15. §63.7525 What are my monitoring, installation, operation, and maintenance requirements?
 - 16. §63.7530 How do I demonstrate initial compliance with the emission limitations, fuel specifications and work practice standards?
 - 17. §63.7533 Can I use efficiency credits earned from implementation of energy conservation measures to comply with this subpart?
 - 18. §63.7535 Is there a minimum amount of monitoring data I must obtain?
 - 19. §63.7540 How do I demonstrate continuous compliance with the emission limitations, fuel specifications and work practice standards?
 - 20. §63.7541 How do I demonstrate continuous compliance under the emissions averaging provision?
 - 21. §63.7545 What notifications must I submit and when?
 - 22. §63.7550 What reports must I submit and when?
 - 23. §63.7555 What records must I keep?
 - 24. §63.7560 In what form and how long must I keep my records?
 - 25. §63.7565 What parts of the General Provisions apply to me?
 - 26. §63.7570 Who implements and enforces this subpart?
 - 27. §63.7575 What definitions apply to this subpart?
- F. The points in this emission unit group are subject to 40 CFR Part 60, Subpart Dc and shall apply with all applicable provisions of this subpart.
 - 1. §60.40c Applicability and delegation of authority.

- 2. §60.41c Definitions.
- 3. §60.42c Standard for sulfur dioxide (SO₂).
- 4. §60.43c Standard for particulate matter (PM).
- 5. §60.44c Compliance and performance test methods and procedures for sulfur dioxide.
- 6. §60.45c Compliance and performance test methods and procedures for particulate matter.
- 7. §60.46c Emission monitoring for sulfur dioxide.
- 8. §60.47c Emission monitoring for particulate matter.
- 9. §60.48c Reporting and recordkeeping requirements.
- G. Compliance with the emission limitations for the boiler in this EUG shall be based on the following:
 - 1. For CO and VOC hourly limits, the fuel gas flow rate (MMBTUH, HHV) and emissions factors in AP-42 (7/98), Section 1.4, manufacturer data, or performance test data. The averaging period is a 7-day rolling period.
 - 2. For PM₁₀/PM_{2.5} hourly limits: the measured or permitted heat input rate (MMBTUH, HHV) and emission factors from EPA's 2014 national emissions inventory for fuel gas combustion, manufacture data, or performance test data. The averaging period is a 7-day rolling period.
 - 3. For hourly NOx: the measured or permitted heat input rate (MMBTUH, HHV) and an emission factor of 0.20 lb/MMBTU (as specified in paragraph B. above) or emissions factors from manufacturer data or performance test data. The averaging period is a 7-day rolling period determined daily.
 - 4. For SO₂ hourly limits: the fuel gas flow rate (SCFH) and emission factors in AP-42 (7/98), Section1.4 (if burning natural gas) or the H₂S concentration (ppmdv) if burning refinery fuel gas. The averaging period is a 7-day rolling period.
 - 5. Compliance with the TPY limits shall remain on a 12-month rolling total of hourly emissions and shall be calculated each calendar month.

EUG 48 – Stationary Reciprocating Internal Combustion Engines Subject to NSPS Subpart IIII and NESHAP Subpart ZZZZ

D-1-4 ID	T	PN	I_{10}	S	O_2	N(Ox	V(OC	C	0
Point ID	Emission Unit	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY
CE-2	Diesel wastewater pump	0.01	0.01	0.01	0.01	0.05	0.01	0.02	0.01	0.62	0.15
CE-3	Diesel wastewater pump	0.03	0.01	0.01	0.01	0.51	0.13	0.20	0.05	0.45	0.11
CE-4	Diesel wastewater pump	0.03	0.01	0.01	0.01	0.51	0.13	0.20	0.05	0.45	0.11
CE-5	Backup air compressor	0.01	0.06	0.01	0.02	0.29	1.29	0.14	0.61	4.57	11.24
CE-6	Diesel water pump	0.01	0.01	0.01	0.01	0.57	0.14	0.19	0.05	0.61	0.15
CE-8	Backup air compressor	0.01	0.01	0.01	0.01	0.29	0.07	0.14	0.04	2.57	0.64
CE-9	Diesel water pump	0.01	0.01	0.01	0.01	0.28	0.07	0.09	0.02	0.30	0.07
CE-10	Backup air compressor	0.02	0.01	0.01	0.01	0.38	0.10	0.12	0.03	0.40	0.10
CE-11	Diesel water pump	0.03	0.01	0.01	0.01	0.51	0.13	0.17	0.04	0.54	0.14
CE-12	Air compressor generator	0.02	0.08	0.01	0.02	0.58	2.53	0.16	0.72	3.02	13.23
CE-13	Diesel water pump	0.03	0.01	0.01	0.01	0.51	0.13	0.17	0.04	0.54	0.14
CE-14	Diesel water pump	0.01	0.01	0.01	0.01	0.52	0.13	0.17	0.04	0.55	0.14
CE-15	Backup air compressor	0.02	0.01	0.01	0.01	0.38	0.10	0.12	0.03	0.40	0.10
40-C1168	Air compressor	0.02	0.09	0.01	0.04	0.39	1.68	0.19	0.80	3.34	14.62

- A. The owner/operator shall comply with all applicable requirements of the NESHAP: Reciprocating Internal Combustion Engines, Subpart ZZZZ, for each affected facility including but not limited to: [40 CFR §§ 63.6580 through 63.6675]
 - 1. § 63.6580 What is the purpose of subpart ZZZZ?
 - 2. § 63.6585 Am I subject to this subpart?
 - 3. § 63.6590 What parts of my plant does this subpart cover?
 - 4. § 63.6595 When do I have to comply with this subpart?
 - 5. § 63.6603 What emission limitations and operating limitations must I meet if I own or operate an existing stationary RICE located at an area source of HAP emissions?
 - 6. § 63.6605 What are my general requirements for complying with this subpart?
 - 7. § 63.6625 What are my monitoring, installation, operation, and maintenance requirements?
 - 8. § 63.6630 How do I demonstrate initial compliance with the emission limitations and operating limitations?
 - 9. § 63.6640 How do I demonstrate continuous compliance with the emission limitations and operating limitations?
 - 10. § 63.6645 What notifications must I submit and when?
 - 11. § 63.6650 What reports must I submit and when?
 - 12. § 63.6655 What records must I keep?
 - 13. § 63.6660 In what form and how long must I keep my records?
 - 14. § 63.6665 What parts of the General Provisions apply to me?
 - 15. § 63.6670 Who implements and enforces this subpart?
 - 16. § 63.6675 What definitions apply to this subpart?
- B. The permittee shall comply with all applicable requirements of 40 CFR Part 60, Subpart IIII, Standards of Performance for Stationary Compression Ignition Internal Combustion Engines and shall comply with all applicable requirements including but not limited to the following:
 - 1. § 60.4200 Am I subject to this subpart?
 - 2. § 60.4201 What emission standards must I meet for non-emergency engines if I am a stationary CI internal combustion engine manufacturer?
 - 3. § 60.4202 What emission standards must I meet for emergency engines if I am a stationary CI internal combustion engine manufacturer?
 - 4. § 60.4203 How long must my engines meet the emission standards if I am a stationary CI internal combustion engine manufacturer?
 - 5. § 60.4204 What emission standards must I meet for non-emergency engines if I am an owner or operator of a stationary CI internal combustion engine?
 - 6. § 60.4206 How long must I meet the emission standards if I am an owner or operator of a stationary CI internal combustion engine?
 - 7. § 60.4207 What fuel requirements must I meet if I am an owner or operator of a stationary CI internal combustion engine subject to this subpart?
 - 8. § 60.4209 What are the monitoring requirements if I am an owner or operator of a stationary CI internal combustion engine?
 - 9. § 60.4210 What are my compliance requirements if I am a stationary CI internal combustion engine manufacturer?
 - 10. § 60.4211 What are my compliance requirements if I am an owner or operator of a stationary CI internal combustion engine?
 - 11. § 60.4212 What test methods and other procedures must I use if I am an owner or operator of a stationary CI internal combustion engine with a displacement of less than 30 liters per cylinder?

- 12. §60.4214 What are my notification, reporting, and recordkeeping requirements if I am an owner or operator of a stationary CI internal combustion engine?
- 13. § 60.4217 What emission standards must I meet if I am an owner or operator of a stationary internal combustion engine using special fuels?
- 14. § 60.4218 What parts of the General Provisions apply to me?
- 15. § 60.4219 What definitions apply to this subpart?
- C. All engines excluding CE-5 and CE-12 are limited to 500 hours per year operation.

[OAC 252:100-8-6(a)(1)]

EUG 51 – Miscellaneous Vents Subject to 40 CFR Part 63 Subpart CC

EU	Point	Equipment	Installed Date
P-VENT7	P-VENT7	Asphalt light ends recovery sump	1970

A. The above vent shall comply with the miscellaneous process vent and monitoring provisions of NESHAP Subpart CC. [40 CFR § 63.643 and § 63.644]

EUG 53 – Vents Subject to Permit Limitations and 40 CFR Part 63 Subpart UUU

Point	Dwagong	VO	C
Foint	Process	lb/hr	TPY
P-VENT6	CCR regenerator vent	2.20	9.63
P-VENT8	CCR depressurization and purge vent		

- A. The CCR regenerator vent (P-VENT6) and the CCR depressurization and purge vent (P-VENT8) are subject to and shall comply with 40 CFR Part 63, Subpart UUU.
- B. The temperature limit for the CCR regenerator vent (P-VENT6) is 312°F as established in the performance test conducted December 6, 2011. The temperature limit may be changed at any time upon completion and submittal of an updated performance test to ODEQ.

[40 CFR § 63.1567(a)(2)]

C. Emissions from the CCR depressurization and purge vent (P-VENT8) are subject to the requirements of 40 CFR 63.1566(a) and are routed to controls as required by this regulation.

[40 CFR § 63.1566(a)]

EUG 54 – Molten Sulfur Pit

TATI	Doint	Normal Contents		2S	
EU	Point	Normal Contents	lb/hr	TPY	
P-SP301	P-SP301	Sulfur	0.02	0.06	

A. The H₂S content of discharges from this unit shall not exceed 4,000 ppm.

[OAC 252:100-8-6(a)(1)]

B. At least once every calendar quarter, the permittee shall conduct testing of H₂S concentrations in discharges from this unit. Testing may be done using Draeger tubes or an equivalent method approved by Air Quality. [OAC 252:100-43]

EUG 56 – Grandfathered Wastewater System Subject to 40 CFR Part 63 Subpart CC

EU	Point	Equipment	Installed Date
P-WW1	P-WW1	Process wastewater systems and open sewers	various

A. The tank shall comply with the wastewater provisions in 40 CFR Part 63, Subpart CC: [40 CFR §63.647]

<u>EUG 57 – Wastewater Systems Subject to NSPS Subpart QQQ and 40 CFR Part 63 Subpart CC</u>

Doint	Process		C
Point			TPY
	CCR drain	0.04	0.16
EU-WW2	D-208 drain	0.04	0.16
EU-WWZ	S-1450 drain	0.04	0.16
	S-1451 drain	0.04	0.16

- A. The permittee shall comply with 40 CFR Part 63, Subpart CC, for the wastewater handling equipment within the refinery including but not limited to [40 CFR §§ 63.640-671]
 - 1. §63.640 Applicability and designation of affected source.
 - 2. §63.641 Definitions.
 - 3. §63.642 General standards.
 - 4. §63.646 Storage vessel provisions.
 - 5. §63.647 Wastewater provisions.
 - 6. §63.648 Equipment leak standards.
 - 7. §63.652 Emissions averaging provisions.
 - 8. §63.655 Reporting and recordkeeping requirements.

EUG 58 – Open API Separator Subject to NSPS Subpart QQQ

EU	Point	pint Equipment	
P-API1	P-API1	Open API Separator	1968

- A. The permittee shall comply with 40 CFR Part 63, Subpart CC, for the wastewater handling equipment within the refinery including but not limited to: [40 CFR §§ 63.640-671]
 - 1. §63.640 Applicability and designation of affected source.
 - 2. §63.641 Definitions.
 - 3. §63.642 General standards.
 - 4. §63.646 Storage vessel provisions.
 - 5. §63.647 Wastewater provisions.
 - 6. §63.648 Equipment leak standards.
 - 7. §63.652 Emissions averaging provisions.
 - 8. §63.655 Reporting and recordkeeping requirements.

EUG 59 – Covered API Separator Subject to NSPS Part 60 Subpart QQQ

EU	Point	Equipment	Installed Date
P-API2	P-API2	Covered API Separator	1978

- A. The permittee shall comply with 40 CFR Part 63, Subpart CC, for the wastewater handling equipment within the refinery including but not limited to: [40 CFR §§ 63.640-671]
 - 1. §63.640 Applicability and designation of affected source.
 - 2. §63.641 Definitions.
 - 3. §63.642 General standards.
 - 4. §63.646 Storage vessel provisions.
 - 5. §63.647 Wastewater provisions.
 - 6. §63.648 Equipment leak standards.
 - 7. §63.652 Emissions averaging provisions.
 - 8. §63.655 Reporting and recordkeeping requirements.

<u>EUG 60 – Wastewater Systems Subject to NSPS Subpart QQQ and 40 CFR Part 63 Subpart CC in SRU, Diesel Hydrotreater Area, Vacuum Unit 2 Area, GHDS Unit, Benfree Unit, and Hydrogen Plant</u>

EU	Point	Equipment	VC	C		
EU	Point	Equipment	lb/hr TP			
EU-WW3	EU-WW3	SRU Closed Process Drains	0.88	3.83		
EU-WW3	EU-WW3	SRU Closed Junction Boxes	0.14	0.61		
EU-WW4	EU-WW4	DHDU P-trap Drains	0.88	3.83		
EU-WW4	EU-W W4	DHDU Junction Boxes	0.14	0.61		
EU-WW5	EU-WW5	Vac #2 P-trap Drains	0.88	3.83		
EU-WW3	EU-WW3	Vac #2 Junction Boxes	0.14	0.61		
EU-WW6	EU-WW6	GHDS P-trap Drains	0.35	1.53		
EU-WWO	GHDS:	GHDS Junction Boxes	0.14	0.61		
EU-52WW	EU-52WW Benfree Unit Drains		0.88	3.83		
EU-47WW	U-47WW EU-47WW Hydrogen Plant Unit Drains		0.29	1.29		

- A. The permittee shall comply with 40 CFR Part 63, Subpart CC, for the wastewater handling equipment within the refinery including but not limited to [40 CFR §§ 63.640-671]
 - 1. §63.640 Applicability and designation of affected source.
 - 2. §63.641 Definitions.
 - 3. §63.642 General standards.
 - 4. §63.646 Storage vessel provisions.
 - 5. §63.647 Wastewater provisions.
 - 6. §63.648 Equipment leak standards.
 - 7. §63.652 Emissions averaging provisions.
 - 8. §63.655 Reporting and recordkeeping requirements.

<u>EUG 61 – Wastewater Systems Subject to NSPS Subpart QQQ and 40 CFR Part 63 Subpart CC in Benfree Unit</u>

EU	Doint	Equipment		OC		
EU	Point	Equipment	lb/hr	TPY		
52-T05	52-T05	Benfree Unit Separator	0.85	3.73		

- A. The permittee shall comply with 40 CFR Part 63, Subpart CC, for the wastewater handling equipment within the refinery including but not limited to: [40 CFR §§ 63.640-671]
 - 1. §63.640 Applicability and designation of affected source.
 - 2. §63.641 Definitions.
 - 3. §63.642 General standards.
 - 4. §63.646 Storage vessel provisions.
 - 5. §63.647 Wastewater provisions.
 - 6. §63.648 Equipment leak standards.
 - 7. §63.652 Emissions averaging provisions.
 - 8. §63.655 Reporting and recordkeeping requirements.

<u>EUG 64 – GHDS Oil/water Separator Tank Subject to NSPS Subpart QQQ and 40 CFR</u> Part 63 Subpart CC in Gasoline Hydrodesulfurization (GHDS) Unit

EU	Point	Description	VOC Em	issions
		_	lb/hr	TPY
GHT-2603	GHT-2603	GHDS Oil-water Separator Tank	2.99	1.11

- A. The permittee shall comply with 40 CFR Part 63, Subpart CC, for the wastewater handling equipment within the refinery including but not limited to: [40 CFR §§ 63.640-671]
 - 1. §63.640 Applicability and designation of affected source.
 - 2. §63.641 Definitions.
 - 3. §63.642 General standards.
 - 4. §63.646 Storage vessel provisions.
 - 5. §63.647 Wastewater provisions.
 - 6. §63.648 Equipment leak standards.
 - 7. §63.652 Emissions averaging provisions.
 - 8. §63.655 Reporting and recordkeeping requirements.

EUG 66 - Cooling Towers Subject to 40 CFR 63 Subpart CC

EU	Point	Equipment	Installed Date
P-CWT1	P-CWT1	Crude Unit cooling tower	1958
P-CWT3	P-CWT3	FCCU cooling tower	1958
P-CWT5	P-CWT5	Alky Unit cooling tower	1968

A. These cooling towers shall comply with 40 CFR §63.654 and 40 CFR § 63.655 upon the effective compliance date. [40 CFR §§ 63.654 & 63.655]

EU	Point	Equipment	V(OC	PN	I ₁₀	P	$M_{2.5}$
EU	Pollit	Equipment	lb/hr	TPY	lb/hr	TPY	lb/hr	PM _{2.5} TPY 0.01 0.01 0.01
EU-	P-	GHDS Cooling	0.25	1.10	0.16	0.70	0.01	0.01
CWT6	CWT6	Tower	0.23	1.10	0.10	0.70	0.01	0.01
52-CT	52-CT	Benfree Unit Cooling	0.05	0.22	0.04	0.17	0.01	0.01
32-C1	32-C1	Tower	0.03	0.22	0.04	0.17	0.01	0.01
P-CWT4	P-	Hydrocracker	0.34	1.47	0.25	1 11	0.01	0.01
P-CW14	CWT4	Cooling Tower	0.34	1.47	0.23	1.11	0.01	0.01

A. The cooling towers are subject to 40 CFR Part 63 Subpart CC, Sec. 63.654 Heat exchange systems, and Sec. 63.655, Reporting and recordkeeping requirements.

[40 CFR §§ 63.654 & 63.655]

EUG 80 - Non-Gasoline Loading Racks

EU	Point	Equipment	Installed Date
P-LR2T	P-LR2T	Gas oil truck unloading rack	1958
P-LT2R	P-LT2R	Gas oil rail unloading rack	1958
P-LR3T	P-LR3T	Solvent truck loading rack	1958
P-LT3R	P-LT3R	Solvent rail loading rack	1958
P-LR5T	P-LR5T	Asphalt truck loading rack*	1960
P-LR5R	P-LR5R	Asphalt/slurry rail loading rack*	1960
P-LR6T	P-LR6T	Slurry truck loading rack	1960

^{*} The asphalt truck loading rack and asphalt rail loading rack are subject to 40 CFR Part 63 Subpart LLLLL. These sources are defined as Group 2 asphalt loading racks and have no control requirements or emission limitations in 40 CFR Part 63 Subpart LLLLL.

EUG 81 – Non-Gasoline Loading Racks

The following emissions are Insignificant Activities since emissions are less than 5 TPY.

EU	Point	Equipment	Installed Date
P-LR4T	P-LR4T	JP-8 truck loading rack	1996
P-LR7R	P-LR7R	Distillate railcar loading rack	2021

EUG 82 – Molten Sulfur Loading Racks

EU	Point	Equipment	H ₂ S		
EU	Fonit	Equipment	lb/hr	TPY	
P-SLRR	P-SLRR	Sulfur railcar loading rack	0.02	0.06	
P-SLRT	P-SLRT	Sulfur truck loading rack	0.02	0.06	

A. The H₂S content of discharges from this unit shall not exceed 4,000 ppm.

[OAC 252:100-8-6(a)(1)]

B. At least once every calendar quarter, the permittee shall conduct testing of H₂S concentrations in discharges from this unit. Testing may be done using Draeger tubes or an equivalent method approved by Air Quality. [OAC 252:100-43]

EUG 85 – FCCU Regenerator Subject to NSPS Subpart J and 40 CFR Part 63 Subpart UUU

Doint ID	Emission Unit	PM_{10}		SO ₂		NOx		VOC		CO	
Point ID	Emission Unit	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY
P-1ME258	FCCU regenerator	15.4	67.5	437.4	1916.	62.14	272.2			95.28	75.12

- A. The FCCU catalyst regenerator is subject to NSPS Subpart J for CO and PM and shall comply with applicable standards. [40 CFR § 60.100-109]
- B. The FCCU catalyst regenerator is subject to 40 CFR Part 63 Subpart UUU and shall comply with applicable standards for CO emissions. [40 CFR § 63.1565(a)(1)]
- C. Discharges from the FCCU regenerator shall not exhibit greater than 30% opacity, except for one six-minute average in any one-hour period. [40 CFR § 60.102(a)(2)]
- D. CO emissions from the FCCU regenerator shall not exceed 500 ppmdv, 1-hour average.

[40 CFR § 60.103(a)]

- E. The FCCU catalyst regenerator shall comply with the provisions of 40 CFR Part 63, Subpart UUU. [40 CFR § 63.1563(b)]
- F. At least once per year, the permittee shall conduct performance testing as follows and furnish a written report to Air Quality. Testing shall be conducted while the FCCU is being operated at least 90% of permitted capacity. A sampling protocol and notification of testing date(s) shall be submitted at least 30 days in advance of commencement of testing. The following USEPA methods shall be used for testing of emissions, unless otherwise approved by Air Quality:

 [OAC 252:100-43]

Method 1: Sample and Velocity Traverses for Stationary Sources.

Method 2: Determination of Stack Gas Velocity and Volumetric Flow Rate.

Method 3: Gas Analysis for Carbon Dioxide, Excess Air, and Dry Molecular

Weight.

Method 4: Moisture in Stack Gases.

Method 6 or 6C: Sulfur Dioxide Emissions from Stationary Sources

Method 7E: NOx Emissions from Stationary Sources

EUG 86 – Catalyst Hopper Vent

The following emissions are Insignificant Activities since emissions are less than 5 TPY.

EU	Point	Equipment	Installed Date
P-FCCUHOP	P-FCCUHOP	FCCU Catalyst Hopper	2016
P-HCATLOAD	P-HCATLOAD	Fresh Hydrocracker Catalyst Unloading	2021
P-HCATUNLOAD	P-HCATUNLOAD	Spent Hydrocracker Catalyst Unloading	2021

A. Visible emissions from the FCCU Catalyst Hopper Vent shall not exceed 20% opacity.

[OAC 252:100-25]

<u>EUG 87 - SRU Tail Gas Incinerator Subject to NSPS Subpart J and 40 CFR Part 63 Subpart UUU</u>

Point ID	Emission Unit	PM ₁₀		SO ₂		NOx		VOC		CO	
Point ID	Emission Unit	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY
P-TGIS1	Sulfur Recovery Unit	0.22	1.00	18.90	82.77	3.01	13.20	0.17	0.73	11.90	52.12

- A. P-TGIS1 is subject to New Source Performance Standards (NSPS), Subpart J and shall comply with all applicable provisions. [40 CFR Part 60, Subpart J]
 - 1. $\S 60.104$ Standards for sulfur dioxide (SO₂) (a)(2)(i);
 - 2. $\S 60.105$ Monitoring of operations (a)(5)(i & ii) & (e)(4)(i);
 - 3. § 60.106 Test methods and procedures (a) & (f)(1 & 3).
- B. P-TGIS1 is subject to National Emission Standards for Hazardous Air Pollutants (NESHAP), Subpart UUU and shall comply with all applicable provisions including but are not limited to the following. [40 CFR Part 63, Subpart UUU]
 - 1. \S 63.1568 What are my requirements for HAP emissions from sulfur recovery units? (a)(1)(i), (b)(1, 2, 5, 6, & 7), & (c)(1 & 2);
 - 2. \S 63.1569 What are my requirements for HAP emissions from bypass lines? (a)(1 & 3), (b)(1-4), & (c)(1 & 2);
 - 3. § 63.1570 What are my general requirements for complying with this subpart? (a) & (c-g);
 - 4. § 63.1571 How and when do I conduct a performance test or other initial compliance demonstration? (a) & (b)(1-5);
 - 5. \S 63.1572 What are my monitoring installation, operation, and maintenance requirements? (a)(1-4) & (d)(1-2);
 - 6. § 63.1574 What notifications must I submit and when? (a)(1-3), (c), (d), & (f)(1, 2(i), 2(ii), 2(viii), 2(ix), & 2(x));
 - 7. \S 63.1575 What reports must I submit and when? (a-h);
 - 8. \S 63.1576 What records must I keep, in what form, and for how long? (a), (b)(1, 3, 4, 5), & (d-i);
 - 9. § 63.1577 What parts of the General Provisions apply to me?
- C. P-TGIS1 is subject to OAC 252:100-31-26 and shall comply with all applicable provisions. [OAC 252:100-31-26]
 - 1. Hydrogen sulfide (H₂S) from any new petroleum or natural gas process equipment shall be removed from the exhaust gas stream or it shall be oxidized to SO₂. H₂S emissions shall be reduced by 95% of the H₂S in the exhaust gas.

[OAC 252:100-31-26(a)(1)]

- 2. Sulfur recovery plants operating in conjunction with any refinery process shall have the sulfur reduction efficiencies required below. [OAC 252:100-31-26(a)(2)(B)]
- 3. When the sulfur content of the acid gas stream from the refinery process is greater than 5.0 LT/D but less than or equal to 150.0 LT/D, the required SO₂ emission reduction efficiency of the sulfur recovery plant shall be calculated using the following formula where Z is the minimum emission reduction efficiency required at all times and X is

- the sulfur feed rate expressed in LT/D of sulfur rounded to one decimal place: Z = 92.34 ($X^{0.00774}$) [OAC 252:100-31-26(a)(2)(D)]
- 4. All new thermal devices for petroleum and natural gas processing facilities regulated under OAC 252:100-31-26(a)(1) shall have installed, calibrated, maintained, and operated an alarm system that will signal noncombustion of the gas.

[OAC 252:100-31-26(c)]

EUG 90 – Miscellaneous Insignificant Heaters

The following emission units are considered "Insignificant Activities" since emissions are less than 5 TPY.

Heater Designation	Location	MMBTUH
IH-1	Kyle House	0.10
IH-2	Main Office	0.375
IH-3	Webb House	0.10
IH-4	Laboratory	0.191
IH-5	Laboratory	0.15
IH-6	Laboratory	0.15
IH-7	Laboratory	0.15
IH-8	Laboratory	0.15
IH-9	Laboratory	0.191
IH-10	Electrical Shop	0.14
IH-11	Maintenance Office	0.15
IH-12	Maintenance Office	0.14
IH-13	East Shop	2.25
IH-14	West Shop	2.25

EUG 91 – Miscellaneous Reciprocating Engines

Unit ID	Location	Unit Description	Unit Capacity
IE-1	Wastewater Plant	Caterpillar 3406B stormwater pump	300 HP
IE-2	Portable	Briggs/Stratton 195432 emergency generator	8 HP
IE-3	Portable	Generac 09441-2 emergency generator	5 HP
P-1183	Firewater Pump House	Cummins NT 855-F4 fire water pump	340 HP
P-1184	Firewater Pump House	Caterpillar 3406B fire water pump	375 HP
P-1185	Firewater Pump House	Cummins QSM11 fire water pump	400 HP

- A. The owner/operator shall comply with all applicable requirements of the NESHAP: Reciprocating Internal Combustion Engines, Subpart ZZZZ, for each affected facility including but not limited to: [40 CFR §§ 63.6580 through 63.6675]
 - 1. § 63.6580 What is the purpose of subpart ZZZZ?
 - 2. § 63.6585 Am I subject to this subpart?
 - 3. § 63.6590 What parts of my plant does this subpart cover?
 - 4. § 63.6595 When do I have to comply with this subpart?
 - 5. § 63.6603 What emission limitations and operating limitations must I meet if I own or operate an existing stationary RICE located at an area source of HAP emissions?

- 6. § 63.6605 What are my general requirements for complying with this subpart?
- 7. § 63.6625 What are my monitoring, installation, operation, and maintenance requirements?
- 8. § 63.6630 How do I demonstrate initial compliance with the emission limitations and operating limitations?
- 9. § 63.6640 How do I demonstrate continuous compliance with the emission limitations and operating limitations?
- 10. § 63.6650 What reports must I submit and when?
- 11. § 63.6655 What records must I keep?
- 12. § 63.6660 In what form and how long must I keep my records?
- 13. § 63.6665 What parts of the General Provisions apply to me?
- 14. § 63.6670 Who implements and enforces this subpart?
- 15. § 63.6675 What definitions apply to this subpart?
- B. Unit ID No. P-1185 is subject to the requirements of 40 CFR Part 60, Subpart IIII, Standards of Performance for Stationary Compression Ignition Internal Combustion Engines and shall comply with all applicable requirements including but not limited to the following:
 - 1. § 60.4200 Am I subject to this subpart?
 - 2. § 60.4201 What emission standards must I meet for non-emergency engines if I am a stationary CI internal combustion engine manufacturer?
 - 3. § 60.4202 What emission standards must I meet for emergency engines if I am a stationary CI internal combustion engine manufacturer?
 - 4. § 60.4203 How long must my engines meet the emission standards if I am a stationary CI internal combustion engine manufacturer?
 - 5. § 60.4204 What emission standards must I meet for non-emergency engines if I am an owner or operator of a stationary CI internal combustion engine?
 - 6. § 60.4206 How long must I meet the emission standards if I am an owner or operator of a stationary CI internal combustion engine?
 - 7. § 60.4207 What fuel requirements must I meet if I am an owner or operator of a stationary CI internal combustion engine subject to this subpart?
 - 8. § 60.4209 What are the monitoring requirements if I am an owner or operator of a stationary CI internal combustion engine?
 - 9. § 60.4210 What are my compliance requirements if I am a stationary CI internal combustion engine manufacturer?
 - 10. § 60.4211 What are my compliance requirements if I am an owner or operator of a stationary CI internal combustion engine?
 - 11. § 60.4212 What test methods and other procedures must I use if I am an owner or operator of a stationary CI internal combustion engine with a displacement of less than 30 liters per cylinder?
 - 12. §60.4214 What are my notification, reporting, and recordkeeping requirements if I am an owner or operator of a stationary CI internal combustion engine?
 - 13. § 60.4217 What emission standards must I meet if I am an owner or operator of a stationary internal combustion engine using special fuels?
 - 14. § 60.4218 What parts of the General Provisions apply to me?
 - 15. § 60.4219 What definitions apply to this subpart?

EUG 92 – Miscellaneous Insignificant Storage Tanks

The following emissions are Insignificant Activities since emissions are less than 5 TPY.

Unit ID	Location	Capacity, Gallons	Contents
IT-1	Shop	2,000	gasoline
IT-2	Shop	1,000	diesel
IT-3	FCCU	1,975	lube oil
IT-4	Platformer	1,321	lube oil
IT-5	FCCU	1,000	lube oil
T-1417	Truck rack	2,000	fuel additive
IT-7	#2 Crude Unit	1,000	corrosion inhibitor
IT-8	#2 Crude Unit	750	corrosion inhibitor
IT-9	FCCU	1,000	corrosion inhibitor
IT-10	FCCU	1,000	corrosion inhibitor
IT-11	#1 Crude Unit	2,000	Embreak 2W157
IT-13	72 Manifold	250	Hi-Tec 4551
T-1414	Truck rack	6,000	fuel additive
T-1416	Truck rack	6,000	fuel additive
IT-17	Crude Vacuum Unit	550	non-hydrocarbon
IT-18	Hydrocracker	3,171	Mystik Synguard
IT-19	ROSE Unit	2,325	Solvent cleaner
IT-20	Boilerhouse	400	non-hydrocarbon
IT-21	FCCU	1,600	corrosion inhibitor
IT-22	Lt. Oils Blender	765	corrosion inhibitor
IT-23	FCCU	750	corrosion inhibitor
IT-24	#1 Crude Unit	1,000	corrosion inhibitor
IT-25	#1 Crude Unit	750	corrosion inhibitor
IT-26	#2 Crude Unit	750	corrosion inhibitor
IT-27	#2 Crude Unit	1,000	corrosion inhibitor
IT-28	72 Manifold	250	fuel additive
IT-29	#1 Crude Unit	750	corrosion inhibitor
IT-30	#2 Crude Unit	1,000	corrosion inhibitor
IT-31	#2 Crude Unit	200	corrosion inhibitor
IT-32	Platformer	560	corrosion inhibitor
IT-33	Alky Unit	564	corrosion inhibitor
IT-34	FCCU	560	corrosion inhibitor
IT-35	72 Manifold	673	corrosion inhibitor
IT-36	FCCU	1,000	corrosion inhibitor
IT-37	Products Handling	560	corrosion inhibitor
T-1413	Truck rack	8,000	TFA-4906
IT-40	FCCU	6,428	TFA-4906
IT-41	#1 Crude Unit	2,000	anti-foulant
IT-42	#2 Crude Unit	1,000	anti-foulant
IT-43	FCCU	300	non-hydrocarbon

Unit ID	Location	Capacity, Gallons	Contents
IT-44	Alky Unit	200	non-hydrocarbon
IT-45	#1 Crude Unit	1,000	non-hydrocarbon
T-1418	Truck rack	1,000	fuel additive
T-6092	72 Manifold	5,600	fuel additive
T-1426	Truck rack	1,000	fuel additive
P-T141	Diesel blending	8,000	Cetane
P-T2001	Asphalt blending	21,000	oily waste water
P-T2002	Asphalt blending	4,200	oily waste water
P-T1901	Firefighter training	7,140	heavy hydrocarbons

EUG 93 – Miscellaneous Insignificant Process Vents

The following emissions are Insignificant Activities since emissions are less than 5 TPY.

Unit ID	Description
DAVENT	Reformer Deaerator Vent
BDVENT	Reformer Blowdown Vent
PSA Hydrogen	Reformer PSA Hydrogen Vent

- 2. The Crude Vacuum Unit Ejector process vents are subject to 40 CFR Part 63 Subpart CC and shall comply with all applicable requirements for vent stream HAP emissions control. Process vents shall either be vented to a flare meeting the requirements of 40 CFR Part 63 Subpart A, a control device which achieves 98% control efficiency of HAP emissions, a fuel gas system, or a device which reduces HAP emissions to 20 ppm or less.

 [40 CFR §63.643(a)]
- 3. In accordance with 40 CFR Part 61 Subpart FF, the permittee shall monitor the benzene content in wastewaters and shall report total benzene content (metric tons per year) annually to AQD.

[40 CFR §61.357(c)]

- 4. The permittee shall be authorized to operate the facility continuously (24 hours per day, every day of the year). [OAC 252:100-8-6(a)]
- 5. The process heaters and boilers at the facility are subject to 40 CFR Part 63, Subpart DDDDD, and shall comply with applicable requirements as of the compliance date.
- A. §63.7480 What is the purpose of this subpart?
- B. §63.7485 Am I subject to this subpart?
- C. §63.7490 What is the affected source of this subpart?
- D. §63.7491 Are any boiler or process heaters not subject to this subpart?
- E. §63.7495 When do I have to comply with this subpart?
- F. §63.7499 What are the subcategories of boilers and process heaters?
- G. §63.7500 What emission limits, work practice standards, and operating limits must I meet?
- H. §63.7505 What are my general requirements for complying with this subpart?
- I. §63.7506 Do any boilers or process heaters have limited requirements?
- J. §63.7507 What are the health-based compliance alternatives for the hydrogen chloride (HCl) and total selected metals (TSM) standards?

- K. §63.7510 What are my initial compliance requirements and by what date must I conduct them?
- L. §63.7515 When must I conduct subsequent performance tests or fuel analyses?
- M. §63.7520 What performance test and procedures must I use?
- N. §63.7521 What fuel analyses and procedures must I use?
- O. §63.7522 Can I use emission averaging to comply with this subpart?
- P. §63.7525 What are my monitoring, installation, operation and maintenance requirements?
- Q. §63.7530 How do I demonstrate initial compliance with the emissions limits and work practice standards?
- R. §63.7535 How do I monitor and collect data to demonstrate continuous compliance?
- S. §64.7540 How do I demonstrate continuous compliance with the emission limits and work practice standards?
- T. §63.7541 How do I demonstrate continuous compliance under the emission averaging provisions?
- U. §63.7545 What notifications must I submit and when?
- V. §63.7550 What reports must I submit and when?
- W. §63.7555 What records must I keep?
- X. §63.7560 In what form and how long must I keep my records?
- Y. §63.7565 What parts of the General Provisions apply to me?
- Z. §63.7570 Who implements and enforces this subpart?
- AA. §63.7575 What definitions apply to this subpart?
- 6. The following records shall be maintained on location for inspection by AQD regulatory personnel. The required records shall be retained either in printed hard-copy or electronically for a period of at least five years following the date of recording. [OAC 252:100-8-6(a)(3)(b)]
- A. Sulfur content of gas fuels used in EUGs No. 37, 38, 39, and 43 (continuous when operating).
- B. Opacity of FCCU catalyst regenerator emissions (continuous when operating).
- C. Vapor pressures and throughputs of all tanks listed in EUGs No. 3, 5, 7, 8, 9, 10, 12, 13, 14, 18, and 23 (monthly and 12-month rolling totals).
- D. Seal gap inspections for floating roof tanks subject to NSPS Subpart K, Subpart Ka, or Subpart Kb; or 40 CFR Part 63 Subpart CC.
- E. Inspection of water seals on drains on systems in EUGs 57 (CCR Platformer), 60 (SRU, DHDU, No. 2 Crude/Vacuum Unit, GHDS, Benfree Unit, and Hydrogen Plant), and 61 (Benfree Unit).
- F. Records as required by 40 CFR Part 63 Subpart CC and Subpart R for gasoline loading terminals:
 - 1. VOC concentrations in discharges (If using VRU)
 - 2. vapor tightness of tank trucks
 - 3. leak testing of valves, meters, etc.
- G. Records as required by NSPS Subparts GGG and GGGa and/or 40 CFR Part 63 Subpart CC of leak detection and repair for the Alkylation Unit Area, Platformer Unit Area, No. 1 Crude/Vacuum Unit Area, No. 2 Crude/Vacuum Unit Area, Diesel Hydrotreater Unit Area, Bulk Gasoline Terminal Area, FCCU Unit Area, Hydrocracker Unit Area, Asphalt Unit Area, Amine/SWS/SRU/TGTU Area, Steam/Utilities/Flare System Area, Gasoline Hydrodesulfurization Unit, Benfree Unit and Hydrogen Plant.
- H. Records of annual benzene content in wastewater as required by 40 CFR Part 61, Subpart FF.
- I. Records of testing of H₂S emissions from Asphalt Unit Sulfatreat unit (weekly), Sulfur loading racks (quarterly), and molten sulfur pit (quarterly).

- J. Records as required by 40 CFR Part 60, Subpart QQQ.
- K. Records as required by 40 CFR Part 63 Subpart UUU.
- L. Records as required by NSPS Subparts J and Ja.
- M. Records as required by 40 CFR Part 63 Subpart DDDDD.
- N. Records as required by 40 CFR Part 63 Subpart LLLLL.
- O. Records as required by 40 CFR Part §60.48c(g) of fuels used in 40-H1101, 40-B130, and 22-B131 (monthly).
- P. Records as required by 40 CFR Part 63, Subpart ZZZZ
- Q. Records for Heat Exchanger Systems required by 40 CFR Part 63 Subpart CC.
- R. Records of CO concentrations in FCCU regenerator discharges, ppmdv (hourly when operated and 365-day rolling averages).
- S. Records as required by 40 CFR Part 60, Subpart IIII.
- T. OAC 252:100-8.36.2(c) is a recordkeeping and notification requirement for PSD facilities conducting projects utilizing projected actual emissions (PAE).
- U. Records of throughputs and VOC emissions for EUGs 18 and 23.
- V. Records as required by 40 CFR Part 63, Subpart CC, for EUG 23
- 7. The following records shall be maintained on site to verify insignificant activities.

[OAC 252:8-6(a)(3)(b)]

- A. Throughput at fuel storage/dispensing equipment operated solely for facility owned vehicles (monthly, averaged over a 30-day period)
- B. Calculations of emissions from the process unit vents in EUG-93.
- 8. No later than 30 days after each anniversary date of the issuance of the initial Part 70 operating permit (July 8, 2002), the permittee shall submit to Air Quality Division of DEQ, with a copy to the US EPA, Region 6, a certification of compliance with the terms and conditions of this permit. [OAC 252:100-8-6 (c)(5)(a)&(d)]
- 9. This facility is considered an existing Prevention of Significant Deterioration (PSD) facility. As such, the facility is subject to the provisions of OAC 252:100-8-36.2(c) for any project as defined therein. [OAC 252:100-8-36.2(c)]
- 10. The Permit Shield (Standard Conditions, Section VI) is extended to the following requirements that have been determined to be inapplicable to this facility.

[OAC 252:100-8-6(d)(2)]

A.	OAC 252:100-11	Alternative Emissions Reduction
В.	OAC 252:100-15	Mobile Sources
C.	OAC 252:100-17	Incinerators
D.	OAC 252:100-23	Cotton Gins
E.	OAC 252:100-24	Grain Elevators
F.	OAC 252:100-39	Nonattainment Areas
G.	OAC 252:100-47	Landfills
H.	40 CFR Part 60, Subpart Db	Steam Generating Units (100-250 MMBTUH)
I.	40 CFR Part 60, Subpart XX	Gasoline Loading Terminals
J.	40 CFR Parts 72, 73, 74, 75,	
	and 76	Acid Rain

- 11. The Oklahoma Department of Environmental Quality has granted Wynnewood Refining Company extensions to the compliance deadlines for the EPA's Refinery Sector Rule (80 Fed. Reg. 75178) in accordance with Clean Air Act §§112(i)(3)(B) and 112(f)(4)(B) and in 40 CFR §63.6(i)(3). The compliance extensions are detailed below: [40 CFR §63.6(i)(3)]
- A. Compliance with the requirements applicable to all flares and pressure relief devices ("PRDs") pursuant to 40 CFR §§ 63.648, 63.670, and 63.671, as well as all related monitoring, recordkeeping, and reporting requirements has been extended to January 30, 2020.
- 12. The permittee shall submit a request for modification of the current Title V operating permit within 180 days of commencement of operations of the proposed project.

SCOTT A. THOMPSON Executive Director

OKLAHOMA DEPARTMENT OF ENVIRONMENTAL QUALITY

KEVIN STITT Governor

Mr. Don McGlothlin Environmental Engineer Wynnewood Refining Company, LLC 906 S. Powell Wynnewood, OK 73098

SUBJECT: Permit No. **2017-0042-C** (M-10)

Wynnewood Refinery (FAC ID 1782)

Garvin County, Oklahoma

Dear Mr. McGlothlin:

Enclosed is the permit authorizing construction of the referenced facility. Please note that this permit is issued subject to standard and specific conditions, which are attached. These conditions must be carefully followed since they define the limits of the permit and will be confirmed by periodic inspections.

Also note that you are required to annually submit an emissions inventory for this facility. An emissions inventory must be completed through DEQ's electronic reporting system by April 1st of every year. Any questions concerning the submittal process should be referred to the Emissions Inventory Staff at (405) 702-4100.

Thank you for your cooperation in this matter. If we can be of further service, please contact our office at (405) 702-4100.

Sincerely,

Phillip Fielder, P.E. Chief Engineer AIR QUALITY DIVISION

Enclosures

Department of Environmental Quality (DEQ) Air Quality Division (AQD) Acronym List

4-15-21

A CIENT	A CONTRACTOR	II ((0)	E 11.1 1
ACFM	Actual Cubic Feet per Minute	H ₂ CO	Formaldehyde
AD	Applicability Determination	H ₂ S	Hydrogen Sulfide
AFRC	Air-to-Fuel Ratio Controller	HAP	Hazardous Air Pollutants
API	American Petroleum Institute	HC	Hydrocarbon
ASTM	American Society for Testing and	HCFC	Hydrochlorofluorocarbon
	Materials	HFR	Horizontal Fixed Roof
		HON	Hazardous Organic NESHAP
BACT	Best Available Control Technology	HP	Horsepower (hp)
BAE	Baseline Actual Emissions	HR	Hour (hr)
BHP	Brake Horsepower (bhp)		
BTU	British thermal unit (Btu)	I&M	Inspection and Maintenance
		IBR	Incorporation by Reference
C&E	Compliance and Enforcement	ICE	Internal Combustion Engine
CAA	Clean Air Act		_
CAM	Compliance Assurance Monitoring	LAER	Lowest Achievable Emission Rate
CAS	Chemical Abstract Service	LB	Pound(s) [Mass] (lb, lbs, lbm)
CAAA	Clean Air Act Amendments	LB/HR	Pound(s) per Hour (lb/hr)
CC	Catalytic Converter	LDAR	Leak Detection and Repair
CCR	Continuous Catalyst Regeneration	LNG	Liquefied Natural Gas
CD	Consent Decree	LT	Long Ton(s) (metric)
CEM	Continuous Emission Monitor		
CFC	Chlorofluorocarbon	M	Thousand (Roman Numeral)
CFR	Code of Federal Regulations	MAAC	Maximum Acceptable Ambient
CI	Compression Ignition	1,2,2,2	Concentration
CNG	Compressed Natural Gas	MACT	Maximum Achievable Control
CO	Carbon Monoxide or Consent Order	1,1101	Technology
COA	Capable of Accommodating	MM	Prefix used for Million (Thousand-
COM	Continuous Opacity Monitor	1,11,1	Thousand)
001/1	Continuous opacity iviolition	MMBTU	Million British Thermal Units (MMBtu)
D	Day	MMBTUH	
DEF	Diesel Exhaust Fluid	1,21,22,2 0,22	(MMBtu/hr)
DG	Demand Growth	MMSCF	Million Standard Cubic Feet (MMscf)
DSCF	Dry Standard (At Standard Conditions)	MMSCFD	Million Standard Cubic Feet per Day
2501	Cubic Foot (Feet)	MSDS	Material Safety Data Sheet
		MWC	Municipal Waste Combustor
EGU	Electric Generating Unit	MWe	Megawatt Electrical
EI	Emissions Inventory	141 44 6	Wegawatt Electrical
EPA	Environmental Protection Agency	NA	Nonattainment
ESP	Electrostatic Precipitator	NAAQS	National Ambient Air Quality Standards
EUG	Emissions Unit Group	NAICS	North American Industry Classification
EUSGU	Electric Utility Steam Generating Unit	TWILED	System
Lebde	Electric Culity Steam Concrating Cint	NESHAP	National Emission Standards for
FCE	Full Compliance Evaluation	T LEGITATI	Hazardous Air Pollutants
FCCU	Fluid Catalytic Cracking Unit	NH_3	Ammonia
FIP	Federal Implementation Plan	NMHC	Non-methane Hydrocarbon
FR	Federal Register	NGL	Natural Gas Liquids
110	redeful Register	NO ₂	Nitrogen Dioxide
GACT	Generally Achievable Control	NOx	Nitrogen Oxides
GHCI	Technology	NOI	Notice of Intent
GAL	Gallon (gal)	NSCR	Non-Selective Catalytic Reduction
GDF	Gasoline Dispensing Facility	NSPS	New Source Performance Standards
GEP	Good Engineering Practice	NSR	New Source Review
GHG	Greenhouse Gases	11044	1.5 Source Review
GR	Grain(s) (gr)		
	O1411(0) (51)		

O ₃ O&G O&M O&NG OAC OC	Ozone Oil and Gas Operation and Maintenance Oil and Natural Gas Oklahoma Administrative Code Oxidation Catalyst	TAC THC TPY TRS TSP TV
PAH PAE PAL Pb PBR PCB	Polycyclic Aromatic Hydrocarbons Projected Actual Emissions Plant-wide Applicability Limit Lead Permit by Rule Polychlorinated Biphenyls	μg/m³ US EP. VFR VMT VOC
PCE PEA PFAS PM PM _{2.5}	Partial Compliance Evaluation Portable Emissions Analyzer Per- and Polyfluoroalkyl Substance Particulate Matter Particulate Matter with an Aerodynamic	VOL VRT VRU YR
PM ₁₀ POM	Diameter <= 2.5 Micrometers Particulate Matter with an Aerodynamic Diameter <= 10 Micrometers Particulate Organic Matter or Polycyclic Organic Matter	2SLB 4SLB 4SRB
ppb ppm ppmv ppmvd PSD psi psia psig	Parts per Billion Parts per Million Parts per Million Volume Parts per Million Dry Volume Prevention of Significant Deterioration Pounds per Square Inch Pounds per Square Inch Absolute Pounds per Square Inch Gage	
RACT	Reasonably Available Control Technology	
RATA RAP RFG RICE	Relative Accuracy Test Audit Regulated Air Pollutant Refinery Fuel Gas Reciprocating Internal Combustion Engine Responsible Official	
ROAT RVP SCC SCF	Regional Office at Tulsa Reid Vapor Pressure Source Classification Code Standard Cubic Foot	
SCFD SCFM SCR SER SI	Standard Cubic Feet per Day Standard Cubic Feet per Minute Selective Catalytic Reduction Significant Emission Rate Spark Ignition	
SIC SIP SNCR SO ₂ SO _X SOP	Standard Industrial Classification State Implementation Plan Selective Non-Catalytic Reduction Sulfur Dioxide Sulfur Oxides Standard Operating Procedure	
SRU T	Sulfur Recovery Unit Tons	

TAC Toxic Air Contaminant Total Hydrocarbons THC TPY Tons per Year TRS Total Reduced Sulfur **TSP Total Suspended Particulates** TVTitle V of the Federal Clean Air Act $\mu g/m^3$ Micrograms per Cubic Meter US EPA U. S. Environmental Protection Agency **VFR** Vertical Fixed Roof **VMT** Vehicle Miles Traveled VOC Volatile Organic Compound **VOL** Volatile Organic Liquid Vapor Recovery Tower VRT **VRU** Vapor Recovery Unit YR Year 2SLB 2-Stroke Lean Burn 4SLB 4-Stroke Lean Burn

4-Stroke Rich Burn

PART 70 PERMIT

AIR QUALITY DIVISION
STATE OF OKLAHOMA
DEPARTMENT OF ENVIRONMENTAL QUALITY
707 N. ROBINSON STREET, SUITE 4100
P.O. BOX 1677
OKLAHOMA CITY, OKLAHOMA 73101-1677

Permit No. <u>2017-0042-C (M-10)</u>

Wynnewo	ood Refining Comp	pany, LLC		
having complied with the require	ments of the law, i	is hereby granted p	ermission to modify a	
petroleum refinery at Wynnew	vood, Garvin Co	ounty, Oklahoma	subject to standard	
conditions dated June 21, 2016, and specific conditions, both attached				
In the absence of construction co	mmencement, this	s permit shall expir	e 18 months from the	
issuance date, except as authorize	ed under Section V	III of the Standard	d Conditions.	
Division Director			Date	
Air Quality Division				

Revised 10/20/06

DEQ Form #100-890

MAJOR SOURCE AIR QUALITY PERMIT STANDARD CONDITIONS (June 21, 2016)

SECTION I. DUTY TO COMPLY

- A. This is a permit to operate / construct this specific facility in accordance with the federal Clean Air Act (42 U.S.C. 7401, et al.) and under the authority of the Oklahoma Clean Air Act and the rules promulgated there under. [Oklahoma Clean Air Act, 27A O.S. § 2-5-112]
- B. The issuing Authority for the permit is the Air Quality Division (AQD) of the Oklahoma Department of Environmental Quality (DEQ). The permit does not relieve the holder of the obligation to comply with other applicable federal, state, or local statutes, regulations, rules, or ordinances.

 [Oklahoma Clean Air Act, 27A O.S. § 2-5-112]
- C. The permittee shall comply with all conditions of this permit. Any permit noncompliance shall constitute a violation of the Oklahoma Clean Air Act and shall be grounds for enforcement action, permit termination, revocation and reissuance, or modification, or for denial of a permit renewal application. All terms and conditions are enforceable by the DEQ, by the Environmental Protection Agency (EPA), and by citizens under section 304 of the Federal Clean Air Act (excluding state-only requirements). This permit is valid for operations only at the specific location listed.

[40 C.F.R. §70.6(b), OAC 252:100-8-1.3 and OAC 252:100-8-6(a)(7)(A) and (b)(1)]

D. It shall not be a defense for a permittee in an enforcement action that it would have been necessary to halt or reduce the permitted activity in order to maintain compliance with the conditions of the permit. However, nothing in this paragraph shall be construed as precluding consideration of a need to halt or reduce activity as a mitigating factor in assessing penalties for noncompliance if the health, safety, or environmental impacts of halting or reducing operations would be more serious than the impacts of continuing operations. [OAC 252:100-8-6(a)(7)(B)]

SECTION II. REPORTING OF DEVIATIONS FROM PERMIT TERMS

- A. Any exceedance resulting from an emergency and/or posing an imminent and substantial danger to public health, safety, or the environment shall be reported in accordance with Section XIV (Emergencies). [OAC 252:100-8-6(a)(3)(C)(iii)(I) & (II)]
- B. Deviations that result in emissions exceeding those allowed in this permit shall be reported consistent with the requirements of OAC 252:100-9, Excess Emission Reporting Requirements.

 [OAC 252:100-8-6(a)(3)(C)(iv)]
- C. Every written report submitted under this section shall be certified as required by Section III (Monitoring, Testing, Recordkeeping & Reporting), Paragraph F.

[OAC 252:100-8-6(a)(3)(C)(iv)]

SECTION III. MONITORING, TESTING, RECORDKEEPING & REPORTING

A. The permittee shall keep records as specified in this permit. These records, including monitoring data and necessary support information, shall be retained on-site or at a nearby field office for a period of at least five years from the date of the monitoring sample, measurement, report, or application, and shall be made available for inspection by regulatory personnel upon request. Support information includes all original strip-chart recordings for continuous monitoring instrumentation, and copies of all reports required by this permit. Where appropriate, the permit may specify that records may be maintained in computerized form.

[OAC 252:100-8-6 (a)(3)(B)(ii), OAC 252:100-8-6(c)(1), and OAC 252:100-8-6(c)(2)(B)]

- B. Records of required monitoring shall include:
 - (1) the date, place and time of sampling or measurement;
 - (2) the date or dates analyses were performed;
 - (3) the company or entity which performed the analyses;
 - (4) the analytical techniques or methods used;
 - (5) the results of such analyses; and
 - (6) the operating conditions existing at the time of sampling or measurement.

[OAC 252:100-8-6(a)(3)(B)(i)]

- C. No later than 30 days after each six (6) month period, after the date of the issuance of the original Part 70 operating permit or alternative date as specifically identified in a subsequent Part 70 operating permit, the permittee shall submit to AQD a report of the results of any required monitoring. All instances of deviations from permit requirements since the previous report shall be clearly identified in the report. Submission of these periodic reports will satisfy any reporting requirement of Paragraph E below that is duplicative of the periodic reports, if so noted on the submitted report.

 [OAC 252:100-8-6(a)(3)(C)(i) and (ii)]
- D. If any testing shows emissions in excess of limitations specified in this permit, the owner or operator shall comply with the provisions of Section II (Reporting Of Deviations From Permit Terms) of these standard conditions.

 [OAC 252:100-8-6(a)(3)(C)(iii)]
- E. In addition to any monitoring, recordkeeping or reporting requirement specified in this permit, monitoring and reporting may be required under the provisions of OAC 252:100-43, Testing, Monitoring, and Recordkeeping, or as required by any provision of the Federal Clean Air Act or Oklahoma Clean Air Act.

 [OAC 252:100-43]
- F. Any Annual Certification of Compliance, Semi Annual Monitoring and Deviation Report, Excess Emission Report, and Annual Emission Inventory submitted in accordance with this permit shall be certified by a responsible official. This certification shall be signed by a responsible official, and shall contain the following language: "I certify, based on information and belief formed after reasonable inquiry, the statements and information in the document are true, accurate, and complete."

[OAC 252:100-8-5(f), OAC 252:100-8-6(a)(3)(C)(iv), OAC 252:100-8-6(c)(1), OAC 252:100-9-7(e), and OAC 252:100-5-2.1(f)]

G. Any owner or operator subject to the provisions of New Source Performance Standards ("NSPS") under 40 CFR Part 60 or National Emission Standards for Hazardous Air Pollutants ("NESHAPs") under 40 CFR Parts 61 and 63 shall maintain a file of all measurements and other information required by the applicable general provisions and subpart(s). These records shall be maintained in a permanent file suitable for inspection, shall be retained for a period of at least five years as required by Paragraph A of this Section, and shall include records of the occurrence and duration of any start-up, shutdown, or malfunction in the operation of an affected facility, any malfunction of the air pollution control equipment; and any periods during which a continuous monitoring system or monitoring device is inoperative.

[40 C.F.R. §§60.7 and 63.10, 40 CFR Parts 61, Subpart A, and OAC 252:100, Appendix Q]

- H. The permittee of a facility that is operating subject to a schedule of compliance shall submit to the DEQ a progress report at least semi-annually. The progress reports shall contain dates for achieving the activities, milestones or compliance required in the schedule of compliance and the dates when such activities, milestones or compliance was achieved. The progress reports shall also contain an explanation of why any dates in the schedule of compliance were not or will not be met, and any preventive or corrective measures adopted. [OAC 252:100-8-6(c)(4)]
- I. All testing must be conducted under the direction of qualified personnel by methods approved by the Division Director. All tests shall be made and the results calculated in accordance with standard test procedures. The use of alternative test procedures must be approved by EPA. When a portable analyzer is used to measure emissions it shall be setup, calibrated, and operated in accordance with the manufacturer's instructions and in accordance with a protocol meeting the requirements of the "AQD Portable Analyzer Guidance" document or an equivalent method approved by Air Quality.

[OAC 252:100-8-6(a)(3)(A)(iv), and OAC 252:100-43]

- J. The reporting of total particulate matter emissions as required in Part 7 of OAC 252:100-8 (Permits for Part 70 Sources), OAC 252:100-19 (Control of Emission of Particulate Matter), and OAC 252:100-5 (Emission Inventory), shall be conducted in accordance with applicable testing or calculation procedures, modified to include back-half condensables, for the concentration of particulate matter less than 10 microns in diameter (PM₁₀). NSPS may allow reporting of only particulate matter emissions caught in the filter (obtained using Reference Method 5).
- K. The permittee shall submit to the AQD a copy of all reports submitted to the EPA as required by 40 C.F.R. Part 60, 61, and 63, for all equipment constructed or operated under this permit subject to such standards. [OAC 252:100-8-6(c)(1) and OAC 252:100, Appendix Q]

SECTION IV. COMPLIANCE CERTIFICATIONS

A. No later than 30 days after each anniversary date of the issuance of the original Part 70 operating permit or alternative date as specifically identified in a subsequent Part 70 operating permit, the permittee shall submit to the AQD, with a copy to the US EPA, Region 6, a certification of compliance with the terms and conditions of this permit and of any other applicable requirements which have become effective since the issuance of this permit.

[OAC 252:100-8-6(c)(5)(A), and (D)]

B. The compliance certification shall describe the operating permit term or condition that is the basis of the certification; the current compliance status; whether compliance was continuous or intermittent; the methods used for determining compliance, currently and over the reporting period. The compliance certification shall also include such other facts as the permitting authority may require to determine the compliance status of the source.

[OAC 252:100-8-6(c)(5)(C)(i)-(v)]

- C. The compliance certification shall contain a certification by a responsible official as to the results of the required monitoring. This certification shall be signed by a responsible official, and shall contain the following language: "I certify, based on information and belief formed after reasonable inquiry, the statements and information in the document are true, accurate, and complete."

 [OAC 252:100-8-5(f) and OAC 252:100-8-6(c)(1)]
- D. Any facility reporting noncompliance shall submit a schedule of compliance for emissions units or stationary sources that are not in compliance with all applicable requirements. This schedule shall include a schedule of remedial measures, including an enforceable sequence of actions with milestones, leading to compliance with any applicable requirements for which the emissions unit or stationary source is in noncompliance. This compliance schedule shall resemble and be at least as stringent as that contained in any judicial consent decree or administrative order to which the emissions unit or stationary source is subject. Any such schedule of compliance shall be supplemental to, and shall not sanction noncompliance with, the applicable requirements on which it is based, except that a compliance plan shall not be required for any noncompliance condition which is corrected within 24 hours of discovery.

[OAC 252:100-8-5(e)(8)(B) and OAC 252:100-8-6(c)(3)]

SECTION V. REQUIREMENTS THAT BECOME APPLICABLE DURING THE PERMIT TERM

The permittee shall comply with any additional requirements that become effective during the permit term and that are applicable to the facility. Compliance with all new requirements shall be certified in the next annual certification.

[OAC 252:100-8-6(c)(6)]

SECTION VI. PERMIT SHIELD

- A. Compliance with the terms and conditions of this permit (including terms and conditions established for alternate operating scenarios, emissions trading, and emissions averaging, but excluding terms and conditions for which the permit shield is expressly prohibited under OAC 252:100-8) shall be deemed compliance with the applicable requirements identified and included in this permit.

 [OAC 252:100-8-6(d)(1)]
- B. Those requirements that are applicable are listed in the Standard Conditions and the Specific Conditions of this permit. Those requirements that the applicant requested be determined as not applicable are summarized in the Specific Conditions of this permit. [OAC 252:100-8-6(d)(2)]

SECTION VII. ANNUAL EMISSIONS INVENTORY & FEE PAYMENT

The permittee shall file with the AQD an annual emission inventory and shall pay annual fees based on emissions inventories. The methods used to calculate emissions for inventory purposes shall be based on the best available information accepted by AQD.

[OAC 252:100-5-2.1, OAC 252:100-5-2.2, and OAC 252:100-8-6(a)(8)]

SECTION VIII. TERM OF PERMIT

- A. Unless specified otherwise, the term of an operating permit shall be five years from the date of issuance. [OAC 252:100-8-6(a)(2)(A)]
- B. A source's right to operate shall terminate upon the expiration of its permit unless a timely and complete renewal application has been submitted at least 180 days before the date of expiration. [OAC 252:100-8-7.1(d)(1)]
- C. A duly issued construction permit or authorization to construct or modify will terminate and become null and void (unless extended as provided in OAC 252:100-8-1.4(b)) if the construction is not commenced within 18 months after the date the permit or authorization was issued, or if work is suspended for more than 18 months after it is commenced. [OAC 252:100-8-1.4(a)]
- D. The recipient of a construction permit shall apply for a permit to operate (or modified operating permit) within 180 days following the first day of operation. [OAC 252:100-8-4(b)(5)]

SECTION IX. SEVERABILITY

The provisions of this permit are severable and if any provision of this permit, or the application of any provision of this permit to any circumstance, is held invalid, the application of such provision to other circumstances, and the remainder of this permit, shall not be affected thereby.

[OAC 252:100-8-6 (a)(6)]

SECTION X. PROPERTY RIGHTS

- A. This permit does not convey any property rights of any sort, or any exclusive privilege. [OAC 252:100-8-6(a)(7)(D)]
- B. This permit shall not be considered in any manner affecting the title of the premises upon which the equipment is located and does not release the permittee from any liability for damage to persons or property caused by or resulting from the maintenance or operation of the equipment for which the permit is issued.

 [OAC 252:100-8-6(c)(6)]

SECTION XI. DUTY TO PROVIDE INFORMATION

A. The permittee shall furnish to the DEQ, upon receipt of a written request and within sixty (60) days of the request unless the DEQ specifies another time period, any information that the DEQ may request to determine whether cause exists for modifying, reopening, revoking, reissuing, terminating the permit or to determine compliance with the permit. Upon request, the permittee shall also furnish to the DEQ copies of records required to be kept by the permit.

[OAC 252:100-8-6(a)(7)(E)]

B. The permittee may make a claim of confidentiality for any information or records submitted pursuant to 27A O.S. § 2-5-105(18). Confidential information shall be clearly labeled as such and shall be separable from the main body of the document such as in an attachment.

 $[OAC\ 252:100-8-6(a)(7)(E)]$

C. Notification to the AQD of the sale or transfer of ownership of this facility is required and shall be made in writing within thirty (30) days after such sale or transfer.

[Oklahoma Clean Air Act, 27A O.S. § 2-5-112(G)]

SECTION XII. REOPENING, MODIFICATION & REVOCATION

A. The permit may be modified, revoked, reopened and reissued, or terminated for cause. Except as provided for minor permit modifications, the filing of a request by the permittee for a permit modification, revocation and reissuance, termination, notification of planned changes, or anticipated noncompliance does not stay any permit condition.

[OAC 252:100-8-6(a)(7)(C) and OAC 252:100-8-7.2(b)]

- B. The DEQ will reopen and revise or revoke this permit prior to the expiration date in the following circumstances: [OAC 252:100-8-7.3 and OAC 252:100-8-7.4(a)(2)]
 - (1) Additional requirements under the Clean Air Act become applicable to a major source category three or more years prior to the expiration date of this permit. No such reopening is required if the effective date of the requirement is later than the expiration date of this permit.
 - (2) The DEQ or the EPA determines that this permit contains a material mistake or that the permit must be revised or revoked to assure compliance with the applicable requirements.
 - (3) The DEQ or the EPA determines that inaccurate information was used in establishing the emission standards, limitations, or other conditions of this permit. The DEQ may revoke and not reissue this permit if it determines that the permittee has submitted false or misleading information to the DEQ.
 - (4) DEQ determines that the permit should be amended under the discretionary reopening provisions of OAC 252:100-8-7.3(b).
- C. The permit may be reopened for cause by EPA, pursuant to the provisions of OAC 100-8-7.3(d). [OAC 100-8-7.3(d)]

D. The permittee shall notify AQD before making changes other than those described in Section XVIII (Operational Flexibility), those qualifying for administrative permit amendments, or those defined as an Insignificant Activity (Section XVI) or Trivial Activity (Section XVII). The notification should include any changes which may alter the status of a "grandfathered source," as defined under AQD rules. Such changes may require a permit modification.

[OAC 252:100-8-7.2(b) and OAC 252:100-5-1.1]

E. Activities that will result in air emissions that exceed the trivial/insignificant levels and that are not specifically approved by this permit are prohibited. [OAC 252:100-8-6(c)(6)]

SECTION XIII. INSPECTION & ENTRY

- A. Upon presentation of credentials and other documents as may be required by law, the permittee shall allow authorized regulatory officials to perform the following (subject to the permittee's right to seek confidential treatment pursuant to 27A O.S. Supp. 1998, § 2-5-105(17) for confidential information submitted to or obtained by the DEQ under this section):
 - (1) enter upon the permittee's premises during reasonable/normal working hours where a source is located or emissions-related activity is conducted, or where records must be kept under the conditions of the permit;
 - (2) have access to and copy, at reasonable times, any records that must be kept under the conditions of the permit;
 - (3) inspect, at reasonable times and using reasonable safety practices, any facilities, equipment (including monitoring and air pollution control equipment), practices, or operations regulated or required under the permit; and
 - (4) as authorized by the Oklahoma Clean Air Act, sample or monitor at reasonable times substances or parameters for the purpose of assuring compliance with the permit.

[OAC 252:100-8-6(c)(2)]

SECTION XIV. EMERGENCIES

A. Any exceedance resulting from an emergency shall be reported to AQD promptly but no later than 4:30 p.m. on the next working day after the permittee first becomes aware of the exceedance. This notice shall contain a description of the emergency, the probable cause of the exceedance, any steps taken to mitigate emissions, and corrective actions taken.

[OAC 252:100-8-6 (a)(3)(C)(iii)(I) and (IV)]

- B. Any exceedance that poses an imminent and substantial danger to public health, safety, or the environment shall be reported to AQD as soon as is practicable; but under no circumstance shall notification be more than 24 hours after the exceedance. [OAC 252:100-8-6(a)(3)(C)(iii)(II)]
- C. An "emergency" means any situation arising from sudden and reasonably unforeseeable events beyond the control of the source, including acts of God, which situation requires immediate corrective action to restore normal operation, and that causes the source to exceed a technology-based emission limitation under this permit, due to unavoidable increases in emissions attributable to the emergency. An emergency shall not include noncompliance to the extent caused by improperly designed equipment, lack of preventive maintenance, careless or improper operation, or operator error.

 [OAC 252:100-8-2]

- D. The affirmative defense of emergency shall be demonstrated through properly signed, contemporaneous operating logs or other relevant evidence that: [OAC 252:100-8-6 (e)(2)]
 - (1) an emergency occurred and the permittee can identify the cause or causes of the emergency;
 - (2) the permitted facility was at the time being properly operated;
 - (3) during the period of the emergency the permittee took all reasonable steps to minimize levels of emissions that exceeded the emission standards or other requirements in this permit.
- E. In any enforcement proceeding, the permittee seeking to establish the occurrence of an emergency shall have the burden of proof. [OAC 252:100-8-6(e)(3)]
- F. Every written report or document submitted under this section shall be certified as required by Section III (Monitoring, Testing, Recordkeeping & Reporting), Paragraph F.

[OAC 252:100-8-6(a)(3)(C)(iv)]

SECTION XV. RISK MANAGEMENT PLAN

The permittee, if subject to the provision of Section 112(r) of the Clean Air Act, shall develop and register with the appropriate agency a risk management plan by June 20, 1999, or the applicable effective date.

[OAC 252:100-8-6(a)(4)]

SECTION XVI. INSIGNIFICANT ACTIVITIES

Except as otherwise prohibited or limited by this permit, the permittee is hereby authorized to operate individual emissions units that are either on the list in Appendix I to OAC Title 252, Chapter 100, or whose actual calendar year emissions do not exceed any of the limits below. Any activity to which a State or Federal applicable requirement applies is not insignificant even if it meets the criteria below or is included on the insignificant activities list.

- (1) 5 tons per year of any one criteria pollutant.
- (2) 2 tons per year for any one hazardous air pollutant (HAP) or 5 tons per year for an aggregate of two or more HAP's, or 20 percent of any threshold less than 10 tons per year for single HAP that the EPA may establish by rule.

[OAC 252:100-8-2 and OAC 252:100, Appendix I]

SECTION XVII. TRIVIAL ACTIVITIES

Except as otherwise prohibited or limited by this permit, the permittee is hereby authorized to operate any individual or combination of air emissions units that are considered inconsequential and are on the list in Appendix J. Any activity to which a State or Federal applicable requirement applies is not trivial even if included on the trivial activities list.

[OAC 252:100-8-2 and OAC 252:100, Appendix J]

SECTION XVIII. OPERATIONAL FLEXIBILITY

A. A facility may implement any operating scenario allowed for in its Part 70 permit without the need for any permit revision or any notification to the DEQ (unless specified otherwise in the permit). When an operating scenario is changed, the permittee shall record in a log at the facility the scenario under which it is operating.

[OAC 252:100-8-6(a)(10) and (f)(1)]

- B. The permittee may make changes within the facility that:
 - (1) result in no net emissions increases,
 - (2) are not modifications under any provision of Title I of the federal Clean Air Act, and
 - (3) do not cause any hourly or annual permitted emission rate of any existing emissions unit to be exceeded;

provided that the facility provides the EPA and the DEQ with written notification as required below in advance of the proposed changes, which shall be a minimum of seven (7) days, or twenty four (24) hours for emergencies as defined in OAC 252:100-8-6 (e). The permittee, the DEQ, and the EPA shall attach each such notice to their copy of the permit. For each such change, the written notification required above shall include a brief description of the change within the permitted facility, the date on which the change will occur, any change in emissions, and any permit term or condition that is no longer applicable as a result of the change. The permit shield provided by this permit does not apply to any change made pursuant to this paragraph. [OAC 252:100-8-6(f)(2)]

SECTION XIX. OTHER APPLICABLE & STATE-ONLY REQUIREMENTS

A. The following applicable requirements and state-only requirements apply to the facility unless elsewhere covered by a more restrictive requirement:

- (1) Open burning of refuse and other combustible material is prohibited except as authorized in the specific examples and under the conditions listed in the Open Burning Subchapter.

 [OAC 252:100-13]
- (2) No particulate emissions from any fuel-burning equipment with a rated heat input of 10 MMBTUH or less shall exceed 0.6 lb/MMBTU. [OAC 252:100-19]
- (3) For all emissions units not subject to an opacity limit promulgated under 40 C.F.R., Part 60, NSPS, no discharge of greater than 20% opacity is allowed except for:

[OAC 252:100-25]

- (a) Short-term occurrences which consist of not more than one six-minute period in any consecutive 60 minutes, not to exceed three such periods in any consecutive 24 hours. In no case shall the average of any six-minute period exceed 60% opacity;
- (b) Smoke resulting from fires covered by the exceptions outlined in OAC 252:100-13-7;
- (c) An emission, where the presence of uncombined water is the only reason for failure to meet the requirements of OAC 252:100-25-3(a); or
- (d) Smoke generated due to a malfunction in a facility, when the source of the fuel producing the smoke is not under the direct and immediate control of the facility and

- the immediate constriction of the fuel flow at the facility would produce a hazard to life and/or property.
- (4) No visible fugitive dust emissions shall be discharged beyond the property line on which the emissions originate in such a manner as to damage or to interfere with the use of adjacent properties, or cause air quality standards to be exceeded, or interfere with the maintenance of air quality standards.

 [OAC 252:100-29]
- (5) No sulfur oxide emissions from new gas-fired fuel-burning equipment shall exceed 0.2 lb/MMBTU. No existing source shall exceed the listed ambient air standards for sulfur dioxide. [OAC 252:100-31]
- (6) Volatile Organic Compound (VOC) storage tanks built after December 28, 1974, and with a capacity of 400 gallons or more storing a liquid with a vapor pressure of 1.5 psia or greater under actual conditions shall be equipped with a permanent submerged fill pipe or with a vapor-recovery system.

 [OAC 252:100-37-15(b)]
- (7) All fuel-burning equipment shall at all times be properly operated and maintained in a manner that will minimize emissions of VOCs. [OAC 252:100-37-36]

SECTION XX. STRATOSPHERIC OZONE PROTECTION

- A. The permittee shall comply with the following standards for production and consumption of ozone-depleting substances: [40 CFR 82, Subpart A]
 - (1) Persons producing, importing, or placing an order for production or importation of certain class I and class II substances, HCFC-22, or HCFC-141b shall be subject to the requirements of §82.4;
 - (2) Producers, importers, exporters, purchasers, and persons who transform or destroy certain class I and class II substances, HCFC-22, or HCFC-141b are subject to the recordkeeping requirements at §82.13; and
 - (3) Class I substances (listed at Appendix A to Subpart A) include certain CFCs, Halons, HBFCs, carbon tetrachloride, trichloroethane (methyl chloroform), and bromomethane (Methyl Bromide). Class II substances (listed at Appendix B to Subpart A) include HCFCs.
- B. If the permittee performs a service on motor (fleet) vehicles when this service involves an ozone-depleting substance refrigerant (or regulated substitute substance) in the motor vehicle air conditioner (MVAC), the permittee is subject to all applicable requirements. Note: The term "motor vehicle" as used in Subpart B does not include a vehicle in which final assembly of the vehicle has not been completed. The term "MVAC" as used in Subpart B does not include the airtight sealed refrigeration system used as refrigerated cargo, or the system used on passenger buses using HCFC-22 refrigerant.

 [40 CFR 82, Subpart B]
- C. The permittee shall comply with the following standards for recycling and emissions reduction except as provided for MVACs in Subpart B: [40 CFR 82, Subpart F]
 - (1) Persons opening appliances for maintenance, service, repair, or disposal must comply with the required practices pursuant to § 82.156;
 - (2) Equipment used during the maintenance, service, repair, or disposal of appliances must

- comply with the standards for recycling and recovery equipment pursuant to § 82.158;
- (3) Persons performing maintenance, service, repair, or disposal of appliances must be certified by an approved technician certification program pursuant to § 82.161;
- (4) Persons disposing of small appliances, MVACs, and MVAC-like appliances must comply with record-keeping requirements pursuant to § 82.166;
- (5) Persons owning commercial or industrial process refrigeration equipment must comply with leak repair requirements pursuant to § 82.158; and
- (6) Owners/operators of appliances normally containing 50 or more pounds of refrigerant must keep records of refrigerant purchased and added to such appliances pursuant to § 82.166.

SECTION XXI. TITLE V APPROVAL LANGUAGE

A. DEQ wishes to reduce the time and work associated with permit review and, wherever it is not inconsistent with Federal requirements, to provide for incorporation of requirements established through construction permitting into the Source's Title V permit without causing redundant review. Requirements from construction permits may be incorporated into the Title V permit through the administrative amendment process set forth in OAC 252:100-8-7.2(a) only if the following procedures are followed:

- (1) The construction permit goes out for a 30-day public notice and comment using the procedures set forth in 40 C.F.R. § 70.7(h)(1). This public notice shall include notice to the public that this permit is subject to EPA review, EPA objection, and petition to EPA, as provided by 40 C.F.R. § 70.8; that the requirements of the construction permit will be incorporated into the Title V permit through the administrative amendment process; that the public will not receive another opportunity to provide comments when the requirements are incorporated into the Title V permit; and that EPA review, EPA objection, and petitions to EPA will not be available to the public when requirements from the construction permit are incorporated into the Title V permit.
- (2) A copy of the construction permit application is sent to EPA, as provided by 40 CFR § 70.8(a)(1).
- (3) A copy of the draft construction permit is sent to any affected State, as provided by 40 C.F.R. § 70.8(b).
- (4) A copy of the proposed construction permit is sent to EPA for a 45-day review period as provided by 40 C.F.R.§ 70.8(a) and (c).
- (5) The DEQ complies with 40 C.F.R. § 70.8(c) upon the written receipt within the 45-day comment period of any EPA objection to the construction permit. The DEQ shall not issue the permit until EPA's objections are resolved to the satisfaction of EPA.
- (6) The DEQ complies with 40 C.F.R. § 70.8(d).
- (7) A copy of the final construction permit is sent to EPA as provided by 40 CFR § 70.8(a).
- (8) The DEQ shall not issue the proposed construction permit until any affected State and EPA have had an opportunity to review the proposed permit, as provided by these permit conditions.
- (9) Any requirements of the construction permit may be reopened for cause after incorporation into the Title V permit by the administrative amendment process, by DEQ as provided in OAC 252:100-8-7.3(a), (b), and (c), and by EPA as provided in 40 C.F.R. § 70.7(f) and (g).

- (10) The DEQ shall not issue the administrative permit amendment if performance tests fail to demonstrate that the source is operating in substantial compliance with all permit requirements.
- B. To the extent that these conditions are not followed, the Title V permit must go through the Title V review process.

SECTION XXII. CREDIBLE EVIDENCE

For the purpose of submitting compliance certifications or establishing whether or not a person has violated or is in violation of any provision of the Oklahoma implementation plan, nothing shall preclude the use, including the exclusive use, of any credible evidence or information, relevant to whether a source would have been in compliance with applicable requirements if the appropriate performance or compliance test or procedure had been performed.

SCOTT A. THOMPSON Executive Director

OKLAHOMA DEPARTMENT OF ENVIRONMENTAL QUALITY

KEVIN STITT Governor

Wynnewood Refining Co. Attn: Don McGlothlin P. O. Box 305 Wynnewood, OK 73098 Permit Number: 2017-0042-C (M-10)

Permit Writer: David Schutz

Date: July 5, 2021

SUBJECT: Petrol

Petroleum Refinery Construction Permit

FAC ID 1782

Wynnewood, Garvin County, Oklahoma

Dear Mr. McGlothlin:

Air Quality Division has completed the initial review of your permit application referenced above. This application has been determined to be a **Tier II**. In accordance with 27A O.S. § 2-14-302 and OAC 252:004-31 the enclosed draft permit is now ready for public review. The requirements for public review include the following steps which <u>you</u> must accomplish:

- 1. Publish at least one legal notice (one day) in at least one newspaper of general circulation within the county where the facility is located. (Instructions enclosed)
- 2. Provide for public review (for a period of 30 days following the date of the newspaper announcement) a copy of this draft permit and a copy of the application at a convenient location within the county of the facility.
- 3. Send to AQD a copy of the proof of publication notice from Item #1 above together with any additional comments or requested changes which you may have on the draft permit.

Thank you for your cooperation. If you have any questions, please refer to the permit number above and contact me or the permit writer at (405) 702-4100.

Sincerely,

Phillip Fielder, P.E.

Phillip Fielder

Chief Engineer

AIR QUALITY DIVISION

enclosures

SCOTT A. THOMPSON Executive Director

OKLAHOMA DEPARTMENT OF ENVIRONMENTAL QUALITY

KEVIN STITT Governor

July 5, 2021

Texas Natural Resources Conservation Commission Operating Permits Division (MC 163) P.O. Box 13087 Austin, TX 78711-3087

SUBJECT: Permit Number: 2017-0042-C (M-2)(PSD)

Facility: Wynnewood Petroleum Refinery (FAC ID 1782)

Location: Garvin County, Oklahoma

Permit Writer: David Schutz

Dear Sir / Madame:

The subject facility has applied for a Part 70 construction permit. Air Quality Division has completed the initial review of the application and prepared a draft permit for public review. Since this facility is within 50 miles of the **Oklahoma - Texas** border, a copy of the proposed permit will be provided to you upon request. The draft permit is also available for review on the Air Quality section of the DEQ web page at http://www.deq.ok.gov.

Thank you for your cooperation. If you have any questions, please refer to the permit number above and contact me or the permit writer at (405) 702-4198.

Sincerely,

Phillip Fielder, P.E.

Chief Engineer

AIR QUALITY DIVISION

Phillip Fielder

NOTICE OF DRAFT PERMIT TIER II or TIER III AIR QUALITY PERMIT APPLICATION

APPLICANT RESPONSIBILITIES

Permit applicants are required to give public notice that a Tier II or Tier III draft permit has been prepared by DEQ. The notice must be published in one newspaper local to the site or facility. Upon publication, a signed affidavit of publication must be obtained from the newspaper and sent to AQD. Note that if either the applicant or the public requests a public meeting, this must be arranged through the Customer Services Division of the DEQ.

REQUIRED CONTENT (27A O.S. § 2-14-302 and OAC 252:4-7-13(c))

- 1. A statement that a Tier II or Tier III draft permit has been prepared by DEQ;
- 2. Name and address of the applicant;
- 3. Name, address, driving directions, legal description and county of the site or facility;
- 4. The type of permit or permit action being sought;
- 5. A description of activities to be regulated, including an estimate of emissions from the facility;
- 6. Location(s) where the application and draft permit may be reviewed (a location in the county where the site/facility is located must be included);
- 7. Name, address, and telephone number of the applicant and DEQ contacts;
- 8. Any additional information required by DEQ rules or deemed relevant by applicant;
- 9. A 30-day opportunity to request a formal public meeting on the draft permit.

SAMPLE NOTICE on page 2.

DEQ NOTICE OF TIER ... II or III... DRAFT PERMIT

A Tier ... II or III... application for an air quality ... type of permit or permit action being sought (e.g., Construction Permit for a Major Facility)... has been filed with the Oklahoma Department of Environmental Quality (DEQ) by applicant, ... name and address.

The applicant requests approval to ...brief description of purpose of application... at the ...site/facility name[proposed to be] located at ...physical address (if any), driving directions, and legal description including county....

In response to the application, DEQ has prepared a draft permit [modification] (Permit Number:xx-xxx-x...), which may be reviewed at ...locations (one must be in the county where the site/facility is located)... or at the Air Quality Division's main office (see address below). The draft permit is also available for review in the Air Quality Section of DEQ's Web Page: http://www.deq.ok.gov/.

This draft permit would authorize the facility to emit the following regulated pollutants: (list each pollutant and amounts in tons per year (TPY))

The public comment period ends 30 days after the date of publication of this notice. Any person may submit written comments concerning the draft permit to the Air Quality Division contact listed below. [Modifications only, add: Only those issues relevant to the proposed modification(s) are open for comment.] A public meeting on the draft permit [modification] may also be requested in writing at the same address. Note that all public meetings are to be arranged and conducted by DEQ/CSD staff.

In addition to the public comment opportunity offered under this notice, this draft permit is subject to U.S. Environmental Protection Agency (EPA) review, EPA objection, and petition to EPA, as provided by 40 CFR § 70.8. [For Construction Permits, add: The requirements of the construction permit will be incorporated into the Title V permit through the administrative amendment process. Therefore, no additional opportunity to provide comments or EPA review, EPA objection, and petitions to EPA will be available to the public when requirements from the construction permit are incorporated into the Title V permit.]

If the Administrator (EPA) does not object to the proposed permit, the public has 60 days following the Administrator's 45 day review period to petition the Administrator to make such an objection as provided in 40 CFR 70.8(d) and in OAC 252:100-8-8(j). Information on all permit actions and applicable review time lines is available in the Air Quality section of the DEQ Web page: http://www.deq.ok.gov/.

For additional information, contact ...names, addresses and telephone numbers of contact persons for the applicant, or contact DEQ at: Chief Engineer, Permits & Engineering Group, Air Quality Division, 707 N. Robinson, Suite 4100, P.O. Box 1677, Oklahoma City, OK, 73101-1677.

Phone No. (405) 702-4100.